×

Twist periodic solutions in the relativistic driven harmonic oscillator. (English) Zbl 1470.34121

Summary: We study the one-dimensional forced harmonic oscillator with relativistic effects. Under some conditions of the parameters, the existence of a unique stable periodic solution is proved which is of twist type. The results depend on a Twist Theorem for nonlinear Hill’s equations which is established and proved here.

MSC:

34C25 Periodic solutions to ordinary differential equations
37C27 Periodic orbits of vector fields and flows

References:

[1] Goldstein, H., Classical Mechanics, (1980), Reading, Mass, USA: Addison-Wesley, Reading, Mass, USA · Zbl 0491.70001
[2] Kim, J.-H.; Lee, H.-W., Relativistic chaos in the driven harmonic oscillator, Physical Review E, 51, 2, 1579-1581, (1995) · doi:10.1103/PhysRevE.51.1579
[3] Billardon, M., Storage ring free-electron laser and chaos, Physical Review Letters, 65, 6, 713-716, (1990) · doi:10.1103/physrevlett.65.713
[4] Chen, C.; Davidson, R. C., Chaotic particle dynamics in free-electron lasers, Physical Review A, 43, 10, 5541-5554, (1991) · doi:10.1103/PhysRevA.43.5541
[5] Chernikov, A. A.; Tél, T.; Vattay, G.; Zaslavsky, G. M., Chaos in the relativistic generalization of the standard map, Physical Review A, 40, 7, 4072-4076, (1989) · doi:10.1103/physreva.40.4072
[6] Leemans, W. P.; Joshi, C.; Mori, W. B.; Clayton, C. E.; Johnston, T. W., Nonlinear dynamics of driven relativistic electron plasma waves, Physical Review A, 46, 8, 5112-5122, (1992) · doi:10.1103/PhysRevA.46.5112
[7] Bereanu, C.; Mawhin, J., Existence and multiplicity results for some nonlinear problems with singular \(\phi\)-Laplacian, Journal of Differential Equations, 243, 2, 536-557, (2007) · Zbl 1148.34013 · doi:10.1016/j.jde.2007.05.014
[8] Chu, J.; Lei, J.; Zhang, M., The stability of the equilibrium of a nonlinear planar system and application to the relativistic oscillator, Journal of Differential Equations, 247, 2, 530-542, (2009) · Zbl 1175.34053 · doi:10.1016/j.jde.2008.11.013
[9] Maró, S., Periodic solutions of a forced relativistic pendulum via twist dynamics, Topological Methods in Nonlinear Analysis, 42, 1, 51-75, (2013) · Zbl 1308.34051
[10] Brezis, H.; Mawhin, J., Periodic solutions of the forced relativistic pendulum, Differential and Integral Equations, 23, 9-10, 801-810, (2010) · Zbl 1240.34207
[11] Bereanu, C.; Torres, P. J., Existence of at least two periodic solutions of the forced relativistic pendulum, Proceedings of the American Mathematical Society, 140, 8, 2713-2719, (2012) · Zbl 1275.34057 · doi:10.1090/S0002-9939-2011-11101-8
[12] Siegel, C. L.; Moser, J. K., Lectures on Celestial Mechanics, (1971), New York, NY, USA: Springer, New York, NY, USA · Zbl 0312.70017
[13] Genecand, C., Transversal homoclinic orbits near elliptic fixed points of area-preserving diffeomorphisms of the plane, Dynamics Reported: Expositions in Dynamical Systems, 2, (1993), Berlin, Germany: Springer, Berlin, Germany · Zbl 0796.58024
[14] Ortega, R., Periodic solutions of a Newtonian equation: stability by the third approximation, Journal of Differential Equations, 128, 2, 491-518, (1996) · Zbl 0855.34058 · doi:10.1006/jdeq.1996.0103
[15] Núñez, D., The method of lower and upper solutions and the stability of periodic oscillations, Nonlinear Analysis: Theory, Methods & Applications, 51, 7, 1207-1222, (2002) · Zbl 1043.34044 · doi:10.1016/s0362-546x(01)00888-4
[16] Lei, J.; Li, X.; Yan, P.; Zhang, M., Twist character of the least amplitude periodic solution of the forced pendulum, SIAM Journal on Mathematical Analysis, 35, 4, 844-867, (2003) · Zbl 1189.37064 · doi:10.1137/S003614100241037X
[17] De Coster, C.; Habets, P.; Zanolin, F., Upper and lower solutions in the theory of ODE boundary value problems: classical and recent results, Non Linear Analysis and Boundary Value Problems for Ordinary Differential Equations. Non Linear Analysis and Boundary Value Problems for Ordinary Differential Equations, CISM-ICMS Courses and Lectures, 371, 1-78, (1996), Vienna, Austria: Springer, Vienna, Austria · Zbl 0889.34018 · doi:10.1007/978-3-7091-2680-6_1
[18] Magnus, W.; Winkler, S., Hill’s Equation, (1979), New York, NY, USA: Dover, New York, NY, USA · Zbl 0158.09604
[19] Starzinskii, V. M., A survey of works on the conditions of stability of the trivial solution of a system of linear differential equations with periodic coefficients, American Mathematical Society Translations, 1, 189-237, (1955) · Zbl 0066.33701
[20] Arnold, V., Méthodes Mathématiques de la Mécanique Classique, (1976), Moscow, Russia: Mir, Moscow, Russia · Zbl 0385.70001
[21] Möser, J., On Invariant Curves of Area-Preserving Mappings of an Annulus. On Invariant Curves of Area-Preserving Mappings of an Annulus, Nachrichten der Akademie der Wissenschaften in Göttingen. II Mathematisch-Physikalische Klasse II, (1962), Göttingen, Germany: Vandenhoeck & Ruprecht, Göttingen, Germany
[22] Newhouse, S. E., Quasi-elliptic periodic points in conservative dynamical systems, American Journal of Mathematics, 99, 5, 1061-1087, (1977) · Zbl 0379.58011 · doi:10.2307/2374000
[23] Ortega, R., The stability of the equilibrium of a nonlinear Hill’s equation, SIAM Journal on Mathematical Analysis, 25, 5, 1393-1401, (1994) · Zbl 0807.34065 · doi:10.1137/S003614109223920X
[24] Ortega, R., The twist coefficient of periodic solutions of a time-dependent Newton’s equation, Journal of Dynamics and Differential Equations, 4, 4, 651-665, (1992) · Zbl 0761.34036 · doi:10.1007/BF01048263
[25] Liu, B., The stability of the equilibrium of a conservative system, Journal of Mathematical Analysis and Applications, 202, 1, 133-149, (1996) · Zbl 0873.34042 · doi:10.1006/jmaa.1996.0307
[26] Núñez, D.; Ortega, R., Parabolic fixed points and stability criteria for non-linear Hill’s equation, Zeitschrift für Angewandte Mathematik und Physik ZAMP, 51, 6, 890-911, (2000) · Zbl 0973.34046 · doi:10.1007/pl00001528
[27] Núñez, D.; Torres, P. J., Periodic solutions of twist type of an earth satellite equation, Discrete and Continuous Dynamical Systems, 7, 2, 303-306, (2001) · Zbl 1068.70027 · doi:10.3934/dcds.2001.7.303
[28] Núñez, D.; Torres, P. J., Stable odd solutions of some periodic equations modeling satellite motion, Journal of Mathematical Analysis and Applications, 279, 2, 700-709, (2003) · Zbl 1034.34051 · doi:10.1016/s0022-247x(03)00057-x
[29] Núñez, D.; Torres, P. J., KAM dynamics and stabilization of a particle sliding over a periodically driven curve, Applied Mathematics Letters, 20, 6, 610-615, (2007) · Zbl 1130.70320 · doi:10.1016/j.aml.2006.05.023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.