Wongsaijai, Ben; Sukantamala, Nattakorn Certain properties of some families of generalized starlike functions with respect to \(q\)-calculus. (English) Zbl 1470.30019 Abstr. Appl. Anal. 2016, Article ID 6180140, 8 p. (2016). Summary: By making use of the concept of \(q\)-calculus, various types of generalized starlike functions of order \(\alpha\) were introduced and studied from different viewpoints. In this paper, we investigate the relation between various former types of \(q\)-starlike functions of order \(\alpha\). We also introduce and study a new subclass of \(q\)-starlike functions of order \(\alpha\). Moreover, we give some properties of those \(q\)-starlike functions with negative coefficient including the radius of univalency and starlikeness. Some illustrative examples are provided to verify the theoretical results in case of negative coefficient functions class. Cited in 14 Documents MSC: 30C45 Special classes of univalent and multivalent functions of one complex variable (starlike, convex, bounded rotation, etc.) 30C55 General theory of univalent and multivalent functions of one complex variable × Cite Format Result Cite Review PDF Full Text: DOI OA License References: [1] Jackson, F. H., On q-functions and a certain difference operator, Transactions of the Royal Society of Edinburgh, 46, 2, 253-281, (1908) [2] Jackson, F. H., On \(q\)-definite integrals, Quarterly Journal of Pure and Applied Mathematics, 41, 193-203, (1910) · JFM 41.0317.04 [3] Aral, A.; Gupta, V., On q-Baskakov type operators, Demonstratio Mathematica, 42, 1, 109-122, (2009) · Zbl 1176.41028 [4] Aral, A.; Gupta, V., On the Durrmeyer type modification of the q-Baskakov type operators, Nonlinear Analysis: Theory, Methods & Applications, 72, 3-4, 1171-1180, (2010) · Zbl 1180.41012 · doi:10.1016/j.na.2009.07.052 [5] Aral, A.; Gupta, V., Generalized q-Baskakov operators, Mathematica Slovaca, 61, 4, 619-634, (2011) · Zbl 1265.41050 · doi:10.2478/s12175-011-0032-3 [6] Anastassiou, G. A.; Gal, S. G., Geometric and approximation properties of some singular integrals in the unit disk, Journal of Inequalities and Applications, 2006, (2006) · Zbl 1193.42075 · doi:10.1155/JIA/2006/17231 [7] Anastassiou, G. A.; Gal, S. G., Geometric and approximation properties of generalized singular integrals in the unit disk, Journal of the Korean Mathematical Society, 43, 2, 425-443, (2006) · Zbl 1107.30029 · doi:10.4134/JKMS.2006.43.2.425 [8] Aral, A., On the generalized Picard and Gauss Weierstrass singular integrals, Journal of Computational Analysis and Applications, 8, 3, 249-261, (2006) · Zbl 1099.41012 [9] Ismail, M. E. H.; Merkes, E.; Styer, D., A generalization of starlike functions, Complex Variables, 14, 1–4, 77-84, (1990) · Zbl 0708.30014 · doi:10.1080/17476939008814407 [10] Raghavendar, K.; Swaminathan, A., Close-to-convexity of basic hypergeometric functions using their Taylor coefficients, Journal of Mathematics and Applications, 35, 111-125, (2012) · Zbl 1382.30035 [11] Mohammed, A.; Darus, M., A generalized operator involving the q-hypergeometric function, Matematichki Vesnik, 65, 4, 454-465, (2013) · Zbl 1299.30037 [12] Aral, A.; Gupta, V.; Agarwal, R. P., Applications of q-Calculus in Operator Theory, (2013), New York, NY, USA: Springer, New York, NY, USA · Zbl 1273.41001 · doi:10.1007/978-1-4614-6946-9 [13] Esra Özkan Uçar, H., Coefficient inequality for q-starlike functions, Applied Mathematics and Computation, 276, 122-126, (2016) · Zbl 1410.30012 · doi:10.1016/j.amc.2015.12.008 [14] Agrawal, S.; Sahoo, S. K., A generalization of starlike functions of order alpha · Zbl 1361.30017 [15] Sahoo, S. K.; Sharma, N. L., On a generalization of close-to-convex functions · Zbl 1308.30020 [16] Al dweby, H.; Darus, M., On harmonic meromorphic functions associated with basic hypergeometric functions, The Scientific World Journal, 2013, (2013) · doi:10.1155/2013/164287 [17] Aldweby, H.; Darus, M., Some subordination results on q-analogue of Ruscheweyh differential operator, Abstract and Applied Analysis, 2014, (2014) · Zbl 1474.30044 · doi:10.1155/2014/958563 [18] Murugusundaramoorthy, G.; Selvaraj, C.; Babu, O. S., Subclasses of starlike functions associated with fractional q-calculus operators, Journal of Complex Analysis, 2013, (2013) · Zbl 1268.30024 · doi:10.1155/2013/572718 [19] Selvakumaran, K. A.; Purohit, S. D.; Secer, A., Majorization for a class of analytic functions defined by q-differentiation, Mathematical Problems in Engineering, 2014, (2014) · Zbl 1407.30004 · doi:10.1155/2014/653917 [20] Selvakumaran, K. A.; Purohit, S. D.; Secer, A.; Bayram, M., Convexity of certain q-integral operators of p-valent functions, Abstract and Applied Analysis, 2014, (2014) · Zbl 1474.30116 · doi:10.1155/2014/925902 [21] Wongsaijai, B.; Sukantamala, N., Applications of fractional q-calculus to certain subclass of analytic p-valent functions with negative coefficient, Abstract and Applied Analysis, 2015, (2015) · Zbl 1354.30012 · doi:10.1155/2015/273236 [22] Gasper, G.; Rahman, M., Basic Hypergeometric Series, (1990), Cambridge, UK: Cambridge University Press, Cambridge, UK · Zbl 0695.33001 [23] Silverman, H., Univalent functions with negative coefficients, Proceedings of the American Mathematical Society, 51, 109-116, (1975) · Zbl 0311.30007 · doi:10.1090/S0002-9939-1975-0369678-0 [24] Deng, Q., On univalent functions with negative coefficients, Applied Mathematics and Computation, 189, 2, 1675-1682, (2007) · Zbl 1120.30007 · doi:10.1016/j.amc.2006.12.078 [25] Goodman, A. W., Univalent functions and nonanalytic curves, Proceedings of the American Mathematical Society, 8, 598-601, (1957) · Zbl 0166.33002 · doi:10.1090/s0002-9939-1957-0086879-9 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.