Plebaniak, Robert Best proximity point theorem in quasi-pseudometric spaces. (English) Zbl 1470.54103 Abstr. Appl. Anal. 2016, Article ID 9784592, 8 p. (2016). Summary: In quasi-pseudometric spaces (not necessarily sequentially complete), we continue the research on the quasi-generalized pseudodistances. We introduce the concepts of semiquasiclosed map and contraction of Nadler type with respect to generalized pseudodistances. Next, inspired by Abkar and Gabeleh we proved new best proximity point theorem in a quasi-pseudometric space. A best proximity point theorem furnishes sufficient conditions that ascertain the existence of an optimal solution to the problem of globally minimizing the error \(\inf \{d(x, y) : y \in T(x) \}\), and hence the existence of a consummate approximate solution to the equation \(T(X) = x\). MSC: 54H25 Fixed-point and coincidence theorems (topological aspects) × Cite Format Result Cite Review PDF Full Text: DOI OA License References: [1] Sankar Raj, V., A best proximity point theorem for weakly contractive non-self-mappings, Nonlinear Analysis: Theory, Methods & Applications, 74, 14, 4804-4808, (2011) · Zbl 1228.54046 · doi:10.1016/j.na.2011.04.052 [2] Abkar, A.; Gabeleh, M., Best proximity points for cyclic mappings in ordered metric spaces, Journal of Optimization Theory and Applications, 150, 1, 188-193, (2011) · Zbl 1232.54035 · doi:10.1007/s10957-011-9810-x [3] Abkar, A.; Gabeleh, M., The existence of best proximity points for multivalued non-self-mappings, Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 107, 2, 319-325, (2013) · Zbl 1287.54036 · doi:10.1007/s13398-012-0074-6 [4] Latif, A.; Al-Mezel, S. A., Fixed point results in quasimetric spaces, Fixed Point Theory and Applications, 2011, (2011) · Zbl 1207.54061 [5] Karuppiah, U.; Marudai, M., Best proximity point results in quasimetric spaces, International Journal of Mathematical Sciences and Applications, 1, 3, 1393-1399, (2011) · Zbl 1266.54091 [6] Gaba, Y. U., Startpoints and (α,γ)-contractions in quasi-pseudometric spaces, Journal of Mathematics, 2014, (2014) · Zbl 1478.54064 · doi:10.1155/2014/709253 [7] Gaba, Y. U., New results in the startpoint theory for quasipseudometric spaces, Journal of Operators, 2014, (2014) · Zbl 1315.54035 · doi:10.1155/2014/741818 [8] Otafudu, O. O., A fixed point theorem in non-Archimedean asymmetric normed linear spaces, Fixed Point Theory, 16, 1, 175-184, (2015) · Zbl 1314.54037 [9] Kelly, J. C., Bitopological spaces, Proceedings of the London Mathematical Society, 13, 71-89, (1963) · Zbl 0107.16401 [10] Reilly, I. L., Quasi-gauge spaces, Journal of the London Mathematical Society, 6, 2, 481-487, (1073) · Zbl 0257.54034 [11] Reilly, I. L.; Subrahmanyam, P. V.; Vamanamurthy, M. K., Cauchy sequences in quasi-pseudo-metric spaces, Monatshefte für Mathematik, 93, 2, 127-140, (1982) · Zbl 0472.54018 · doi:10.1007/bf01301400 [12] Włodarczyk, K.; Plebaniak, R., New completeness and periodic points of discontinuous contractions of Banach-type in quasi-gauge spaces without Hausdorff property, Fixed Point Theory and Applications, 2013, article 289, (2013) · Zbl 1295.54095 · doi:10.1186/1687-1812-2013-289 [13] Włodarczyk, K.; Plebaniak, R., Asymmetric structures, discontinuous contractions and iterative approximation of fixed and periodic points, Fixed Point Theory and Applications, 2013, article 128, (2013) · Zbl 1295.41039 · doi:10.1186/1687-1812-2013-128 [14] Plebaniak, R., On best proximity points for set-valued contractions of Nadler type with respect to b-generalized pseudodistances in b-metric spaces, Fixed Point Theory and Applications, 2014, article 39, (2014) · Zbl 1333.54048 · doi:10.1186/1687-1812-2014-39 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.