×

The jump size distribution of the commodity spot price and its effect on futures and option prices. (English) Zbl 1470.91276

Summary: In this paper, we analyze the role of the jump size distribution in the US natural gas prices when valuing natural gas futures traded at New York Mercantile Exchange (NYMEX) and we observe that a jump-diffusion model always provides lower errors than a diffusion model. Moreover, we also show that although the Normal distribution offers lower errors for short maturities, the Exponential distribution is quite accurate for long maturities. We also price natural gas options and we see that, in general, the model with the Normal jump size distribution underprices these options with respect to the Exponential distribution. Finally, we obtain the futures risk premia in both cases and we observe that for long maturities the term structure of the risk premia is negative. Moreover, the Exponential distribution provides the highest premia in absolute value.

MSC:

91G20 Derivative securities (option pricing, hedging, etc.)
93E20 Optimal stochastic control
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Deng, S., Stochastic models of energy commodity prices and their applications: Mean-reversion with jumps and spikes, Working Paper, (2000)
[2] Schmitz, A.; Wang, Z.; Kimn, J.-H., A jump diffusion model for agricultural commodities with bayesian analysis, Journal of Futures Markets, 34, 3, 235-260, (2014) · doi:10.1002/fut.21597
[3] Maslyuk, S.; Rotaru, K.; Dokumentov, A., Price Discontinuities in Energy Spot and Futures Prices, (2013), Monash University, Department of Economics, Discussion
[4] Prokopczuk, M.; Symeonidis, L.; Simen, C. W., Do jumps matter for volatility forecasting? evidence from energy markets, Journal of Futures Markets, 20, 1-15, (2015)
[5] Hilliard, J. E.; Reis, J., Valuation of commodity futures and options under stochastic convenience yields, interest rates, and jump diffusions in the spot, Journal of Financial and Quantitative Analysis, 33, 1, 61-86, (1998) · doi:10.2307/2331378
[6] Yan, X., Valuation of commodity derivatives in a new multi-factor model, Review of Derivatives Research, 5, 3, 251-271, (2002) · Zbl 1070.91014 · doi:10.1023/A:1020871616158
[7] Hilliard, J. E.; Hilliard, J., Estimating early exercise premiums on gold and copper options using a multifactor model and density matched lattices, Financial Review, 50, 1, 27-56, (2015) · doi:10.1111/fire.12059
[8] Kyriakou, I.; Nomikos, N. K.; Papapostolou, N. C.; Pouliasis, P. K., Affine-Structure Models and the Pricing of Energy Commodity Derivatives, European Financial Management, 22, 5, 853-881, (2016) · doi:10.1111/eufm.12071
[9] Gibson, R.; Schwartz, E. S., Stochastic convenience yield and the pricing of oil contingent claims, The Journal of Finance, 45, 3, 959-973, (1990) · doi:10.1111/j.1540-6261.1990.tb05114.x
[10] Schwartz, E. S., The stochastic behavior of commodity prices: Implications for valuation and hedging, Journal of Finance, 52, 3, 923-973, (1997) · doi:10.1111/j.1540-6261.1997.tb02721.x
[11] Gómez-Valle, L.; Habibilashkary, Z.; Martínez-Rodríguez, J., A new technique to estimate the risk-neutral processes jump-diffusion commodity futures models, Journal of Computational and Applied Mathematics, 309, 435-441, (2017) · Zbl 1410.91484 · doi:10.1016/j.cam.2015.12.028
[12] Back, J.; Prokopczuk, M.; Rudolf, M., Seasonality and the valuation of commodity options, Journal of Banking and Finance, 37, 2, 273-290, (2013) · doi:10.1016/j.jbankfin.2012.08.025
[13] Cartea, A.; Figueroa, M. G., Pricing in electricity markets: A mean reverting jump diffusion model with seasonality, Applied Mathematical Finance, 12, 313-335, (2015) · Zbl 1134.91526 · doi:10.1080/13504860500117503
[14] Arismendi, J. C.; Back, J.; Prokopczuk, M.; Paschke, R.; Rudolf, M., Seasonal Stochastic Volatility: Implications for the pricing of commodity options, Journal of Banking and Finance, 66, 53-65, (2016) · doi:10.1016/j.jbankfin.2016.02.001
[15] Li, L.; Mendoza-Arriaga, R.; Mo, Z.; Mitchell, D., Modelling electricity prices: a time change approach, Quantitative Finance, 16, 7, 1089-1109, (2016) · Zbl 1468.91170 · doi:10.1080/14697688.2015.1125521
[16] Szymanowska, M.; De Roon, F.; Nijman, T.; Van Den Goorbergh, R., An Anatomy of Commodity Futures Risk Premia, Journal of Finance, 69, 1, 453-483, (2014) · doi:10.1111/jofi.12096
[17] Wei, S.; Zhu, Z., Commodity convenience yield and risk premium determination: The case of the U.S. natural gas market, Energy Economics, 28, 523-534, (2006) · doi:10.1016/j.eneco.2005.10.002
[18] Protter, C., Stochastic Integration and Differential Equations, (2004), New York, USA: Springer Verlag, New York, USA · Zbl 1041.60005
[19] Applebaum, D., Lévy Processes and Stochastic Calculus, (2009), Cambridge, UK: Cambridge University Press, Cambridge, UK · Zbl 1200.60001
[20] Cont, R.; Tankov, P., Financial Modelling with Jump Processes, (2004), Raton, Florida, USA: Chapman & Hall, CRC Press, Raton, Florida, USA · Zbl 1052.91043
[21] Øksendal, B.; Sulem, A., Applied Stochastic Control of Jump Diffusions. Applied Stochastic Control of Jump Diffusions, Universitext, (2007), Heidelberg, Germany: Springer-Verlag, Heidelberg, Germany · Zbl 1116.93004 · doi:10.1007/978-3-540-69826-5
[22] Shreve, S. E., Stochastic Calculus for Finance II: Continuous Time Models, (2004), New York, USA: Springer Finance, New York, USA · Zbl 1068.91041
[23] Nawalkha, S. K.; Beliaeva, N.; Soto, G., Dynamic Term Structure Modeling: The Fixed Income Valuation Course, (2007), John Wiley & Sons
[24] Chung, S. F.; Wong, H. Y., Analytical pricing of discrete arithmetic Asian options with mean reversion and jumps, Journal of Banking and Finance, 44, 130-140, (2001) · doi:10.1016/j.jbankfin.2014.04.011
[25] Xiao, Y.; Colwell, D. B.; Bhar, R., Risk Premium in Electricity Prices: Evidence from the PJM Market, Journal of Futures Markets, 35, 8, 776-793, (2015) · doi:10.1002/fut.21681
[26] Gómez-Valle, L.; Martínez-Rodríguez, J., The role of the risk-neutral jump size distribution in single-factor interest rate models, Abstract and Applied Analysis, 2015, (2015) · Zbl 1433.91181 · doi:10.1155/2015/805695
[27] Gómez-Valle, L.; Martínez-Rodríguez, J., Estimation of risk-neutral processes in single-factor jump-diffusion interest rate models, Journal of Computational and Applied Mathematics, 291, 48-57, (2016) · Zbl 1320.91149 · doi:10.1016/j.cam.2015.02.031
[28] Härdle, W., Applied nonparametric regression, Econometric Society Monographs, 19, (1990), New York, NY, USA: Cambridge University Press, New York, NY, USA · Zbl 0714.62030 · doi:10.1017/ccol0521382483
[29] Duffie, D.; Pan, J.; Singleton, K., Transform analysis and asset pricing for affine jump-diffusions, Econometrica, 68, 6, 1343-1376, (2000) · Zbl 1055.91524 · doi:10.1111/1468-0262.00164
[30] Beliaeva, N.; Nawalkha, S. K., Pricing American interest rate options under the jump-extended constant-elasticity-of-variance short rate models, Journal of Banking and Finance, 36, 1, 151-163, (2012) · doi:10.1016/j.jbankfin.2011.06.012
[31] Jarrow, R.; Li, H.; Zhao, F., Interest rate caps ’simle’ too! But can the LIBOR market models capture it?, Journal of Finance, 62, 1, 345-382, (2007) · doi:10.1111/j.1540-6261.2007.01209.x
[32] Bandi, F. M.; Nguyen, T. H., On the functional estimation of jump-diffusion models, Journal of Econometrics, 116, 1-2, 293-328, (2003) · Zbl 1038.62071 · doi:10.1016/S0304-4076(03)00110-6
[33] Johannes, M., The statistical and economic role of jumps in continuous-time interest rate models, The Journal of Finance, 59, 1, 227-259, (2004) · doi:10.1111/j.1540-6321.2004.00632.x
[34] Figà-Talamanca, G.; Roncoroni, A.; Roncoroni, A.; Fusai, G.; Cummins, M., Nonparametric estimation of energy and commodity price process, Handbook of Multi-Commodity Markets and Products. Structuring, Trading and Risk Management, (2015), Chichester, UK: John Wiley & Sons Ltd, Chichester, UK
[35] Bandi, F. M.; Renò, R., Time-varying leverage effects, Journal of Econometrics, 169, 1, 94-113, (2012) · Zbl 1443.62330 · doi:10.1016/j.jeconom.2012.01.010
[36] Boudoukh, J.; Downing, C.; Richardson, M.; Stanton, R.; Bollerslev, T.; Russell, J.; Watson, M., A multifactor, nonlinear, continuous-time model of interest rate volatility, Volatility and time series econometrics: essays in honor of Robert F. Engle, (2010), New York, USA: Oxford University Press, New York, USA · Zbl 1223.91004 · doi:10.1093/acprof:oso/9780199549498.003.0014
[37] Gómez-Valle, L.; Martínez-Rodríguez, J., Advances in pricing commodity futures: multifactor models, Mathematical and Computer Modelling, 57, 7-8, 1722-1731, (2013) · Zbl 1305.91229 · doi:10.1016/j.mcm.2011.11.015
[38] Fakharany, M.; Company, R.; Jòdar, L., Positive finite difference schemes for a partial integro-differential option pricing model, Applied Mathematics and Computation, 249, 320-332, (2014) · Zbl 1338.91152 · doi:10.1016/j.amc.2014.10.064
[39] Calvo-Garrido, M. C.; Ehrhardt, M.; Vázquez, C., Pricing swing options in electricity markets with two stochastic factors using a partial differential equation approach, Journal of Computational Finance, 20, 3, 81-107, (2017)
[40] Wilmott, P., Paul Wilmott Introduces Quantitative Finance, (2001), West Sussex, UK: John Wiley & Sons, West Sussex, UK · Zbl 1170.91005
[41] Weron, R., Market price of risk implied by Asian-style electricity options and futures, Energy Economics, 30, 1098-1115, (2015)
[42] Veraart, A. E. D.; Veraart, L. A. M., Risk premia in energy markets, (2013), Aarhus University
[43] Cartea, A.; Williams, T., UK gas markets: The market price of risk and applications to multiple interruptible supply contracts, Energy Economics, 30, 3, 829-846, (2008) · doi:10.1016/j.eneco.2007.03.001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.