The approximation Szász-Chlodowsky type operators involving Gould-Hopper type polynomials. (English) Zbl 1470.41016

Summary: We introduce the Szász and Chlodowsky operators based on Gould-Hopper polynomials and study the statistical convergence of these operators in a weighted space of functions on a positive semiaxis. Further, a Voronovskaja type result is obtained for the operators containing Gould-Hopper polynomials. Finally, some graphical examples for the convergence of this type of operator are given.


41A36 Approximation by positive operators
33C47 Other special orthogonal polynomials and functions
41A10 Approximation by polynomials
41A25 Rate of convergence, degree of approximation
Full Text: DOI


[1] Jakimovski, A.; Leviatan, D., Generalized Szász operators for the approximation in the infinite interval, Mathematica—Revue d’Analyse Numérique et de Théorie de l’Approximation, 11, 34, 97-103, (1969) · Zbl 0188.36801
[2] Büyükyazıcı, İ.; Tanberkan, H.; Serenbay, S. K.; Atakut, Ç., Approximation by Chlodowsky type Jakimovski–Leviatan operators, Journal of Computational and Applied Mathematics, 259, 153-163, (2014) · Zbl 1291.41018
[3] Aral, A.; Gupta, V., The \(q\)-derivative and applications to \(q\)-Szász Mirakyan operators, Calcolo. A Quarterly on Numerical Analysis and Theory of Computation, 43, 3, 151-170, (2006) · Zbl 1121.41016
[4] Kajla, A.; Agrawal, P. N., Approximation properties of Szász type operators based on Charlier polynomials, Turkish Journal of Mathematics, 39, 6, 990-1003, (2015) · Zbl 1347.41028
[5] Kajla, A.; Agrawal, P. N., Szász-Durrmeyer type operators based on Charlier polynomials, Applied Mathematics and Computation, 268, 1001-1014, (2015) · Zbl 1410.41034
[6] Kajla, A.; Agrawal, P. N., Szász-Kantorovich type operators based on Charlier polynomials, Kyungpook Mathematical Journal, 56, 3, 877-897, (2016) · Zbl 1379.26006
[7] Taşdelen, F.; Aktaş, R.; Altin, A., A Kantorovich type of Szasz operators including Brenke-type polynomials, Abstract and Applied Analysis, 2012, (2012) · Zbl 1312.41031
[8] Mahmudov, N. I., Approximation by the \(q\)-Szász-Mirakjan operators, Abstract and Applied Analysis, 2012, (2012) · Zbl 1258.41010
[9] Sucu, S.; Içöz, G.; Varma, S., On some extensions of szasz operators including boas-buck-type polynomials, Abstract and Applied Analysis, 2012, (2012) · Zbl 1250.41014
[10] Gupta, V.; Agarwal, R. P., Convergence Estimates in Approximation Theory, (2014), New York, NY, USA: Springer, New York, NY, USA · Zbl 1295.41002
[11] Altomare, F.; Campiti, M., Korovkin-Type Approximation Theory and Its Applications, (1994), New York, NY, USA: Walter de Gruyter, New York, NY, USA · Zbl 0924.41001
[12] Gadjiev, A. D.; Aral, A., The estimates of approximation by using a new type of weighted modulus of continuity, Computers & Mathematics with Applications. An International Journal, 54, 1, 127-135, (2007) · Zbl 1124.41019
[13] Kolk, E., Matrix summability of statistically convergent sequences, Analysis, 13, 1-2, 77-84, (1993) · Zbl 0801.40005
[14] Gadjiev, A. D., Theorems of the type of P. P. Korovkin’s theorems, Akademiya Nauk SSSR. Matematicheskie Zametki, 20, 5, 781-786, (1976)
[15] DeVore, R. A.; Lorentz, G. G., Constructive approximation. Constructive approximation, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 303, (1993), Berlin, Germany: Springer-Verlag, Berlin, Germany
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.