Kounta, Moussa First passage time of a Markov chain that converges to Bessel process. (English) Zbl 1470.60205 Abstr. Appl. Anal. 2017, Article ID 7189826, 7 p. (2017). Summary: We investigate the probability of the first hitting time of some discrete Markov chain that converges weakly to the Bessel process. Both the probability that the chain will hit a given boundary before the other and the average number of transitions are computed explicitly. Furthermore, we show that the quantities that we obtained tend (with the Euclidian metric) to the corresponding ones for the Bessel process. Cited in 1 Document MSC: 60J10 Markov chains (discrete-time Markov processes on discrete state spaces) 60J60 Diffusion processes × Cite Format Result Cite Review PDF Full Text: DOI OA License References: [1] Lawler, G. F., Conformal invariance and 2D statistical physics, American Mathematical Society. Bulletin. New Series, 46, 1, 35-54, (2009) · Zbl 1154.82009 · doi:10.1090/S0273-0979-08-01229-9 [2] Vollert, A., A Stochastic Control Framework for Real Options in Strategic Evaluation, (2003), Birkhäuser Boston, Inc., Boston, MA · Zbl 1014.91035 · doi:10.1007/978-1-4612-2068-8 [3] Tuckwell, H. C., Stochastic processes in the neurosciences. Stochastic processes in the neurosciences, CBMS-NSF Regional Conference Series in Applied Mathematics, 56, (1989), Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA · Zbl 0675.92001 · doi:10.1137/1.9781611970159 [4] Nelson, D. B.; Ramaswamy, K., Simple binomial processes as diffusion approximations in financial models, Review of Financial Studies, 3, 3, 393-430, (1990) · doi:10.1093/rfs/3.3.393 [5] Kounta, M.; Lefebvre, M., On a discrete version of the CIR process, Journal of Difference Equations and Applications, (2012) · Zbl 1276.60077 [6] Lefebvre, M.; Kounta, M., Hitting problems for Markov chains that converge to a geometric Brownian motion, ISRN Discrete Mathematics, 2011, (2011) · Zbl 1244.60071 [7] Lefebvre, M., Applied Stochastic Processes, (2007), NY, USA: Springer, NY, USA · Zbl 1127.60001 [8] Stroock, D. W.; Varadhan, S. R., Multidimensional Diffusion Processes, (1979), Berlin, Germany: Springer, Berlin, Germany · Zbl 0426.60069 [9] Abramowitz, M.; Stegun, I. A., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, (1965), NY, USA: Dover Publications, NY, USA · Zbl 0515.33001 [10] Batchelder, P. M., An Introduction to linear Difference Equations, (1967), NY, USA: Dover Publications, Inc., NY, USA · JFM 53.0430.09 [11] Bick, A., Quadratic-variation-based dynamic strategies, Management Science, 41, 4, 722-732, (1995) · Zbl 0836.90009 · doi:10.1287/mnsc.41.4.722 [12] Geman, H.; Yor, M., Bessel Processes, Asian Options, and Perpetuities, Mathematical Finance, 3, 4, 349-375, (1993) · Zbl 0884.90029 · doi:10.1111/j.1467-9965.1993.tb00092.x [13] Lefebvre, M., Using a lognormal diffusion process to forecast river flows, Water Resources Research, 38, 6, 121-128, (2002) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.