Poghosyan, Arnak V.; Bakaryan, Tigran K. Optimal rational approximations by the modified Fourier basis. (English) Zbl 1470.41029 Abstr. Appl. Anal. 2018, Article ID 1705409, 21 p. (2018). Summary: We consider convergence acceleration of the modified Fourier expansions by rational trigonometric corrections which lead to modified-trigonometric-rational approximations. The rational corrections contain some unknown parameters and determination of their optimal values for improved pointwise convergence is the main goal of this paper. The goal was accomplished by deriving the exact constants of the asymptotic errors of the approximations with further elimination of the corresponding main terms by appropriate selection of those parameters. Numerical experiments outline the convergence improvement of the optimal rational approximations compared to the expansions by the modified Fourier basis. Cited in 1 Document MSC: 41A60 Asymptotic approximations, asymptotic expansions (steepest descent, etc.) 42A10 Trigonometric approximation × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Krein, M. G., On a special class of differential operators, Doklady AN USSR, 2, 345-349, (1935) · Zbl 0012.16901 [2] Adcock, B., Univariate modified Fourier methods for second order boundary value problems, BIT Numerical Mathematics, 49, 2, 249-280, (2009) · Zbl 1170.65098 · doi:10.1007/s10543-009-0224-1 [3] Adcock, B., Modified Fourier Expansions: Theory, Construction and Applications [Ph.D. thesis], (July 2010), England, UK: Trinity Hall, University of Cambridge, England, UK [4] Adcock, B., Multivariate modified Fourier series and application to boundary value problems, Numerische Mathematik, 115, 4, 511-552, (2010) · Zbl 1193.65235 · doi:10.1007/s00211-010-0287-6 [5] Adcock, B., Convergence acceleration of modified Fourier series in one or more dimensions, Mathematics of Computation, 80, 273, 225-261, (2011) · Zbl 1216.65188 · doi:10.1090/S0025-5718-2010-02393-2 [6] Bakaryan, T. K., On a convergence of the modified Fourier-Pade approximations, Armenian Journal of Mathematics, 8, 2, 120-144, (2016) · Zbl 1354.41007 [7] Huybrechs, D.; Iserles, A.; Nørsett, S.; From high, P., From high oscillation to rapid approximation IV: accelerating convergence, IMA Journal of Numerical Analysis, 31, 442-468, (2011) · Zbl 1218.65154 [8] Iserles, A.; Nørsett, S.; From high, P., oscillation to rapid approximation. I. Modified Fourier expansions, IMA Journal of Numerical Analysis, 28, 4, 862-887, (2008) · Zbl 1221.65348 [9] Iserles, A.; Nørsett, S. P., From high oscillation to rapid approximation. III. Multivariate expansions, IMA Journal of Numerical Analysis, 29, 4, 882-916, (2009) · Zbl 1188.65149 [10] Olver, S., On the convergence rate of a modified Fourier series, Mathematics of Computation, 78, 267, 1629-1645, (2009) · Zbl 1204.65166 · doi:10.1090/S0025-5718-09-02204-2 [11] Zygmund, A., Trigonometric Series, 1,2, (1959), Cambridge, UK: Cambridge University Press, Cambridge, UK · JFM 58.0296.09 [12] Baker Jr., G. A.; Graves-Morris, P., Padé approximants, Encyclopedia of Mathematics and its Applications, (1996), Cambridge, UK: Cambridge University Press, Cambridge, UK · Zbl 0923.41001 [13] Geer, J. F., Rational trigonometric approximations using Fourier series partial sums, Journal of Scientific Computing, 10, 3, 325-356, (1995) · Zbl 0844.42004 · doi:10.1007/BF02091779 [14] Nersessian, A.; Poghosyan, A., On a rational linear approximation of Fourier series for smooth functions, Journal of Scientific Computing, 26, 1, 111-125, (2006) · Zbl 1114.41008 · doi:10.1007/s10915-004-4809-1 [15] Poghosyan, A., On a convergence of the Fourier-Pade approximation, Armenian Journal of Mathematics, 4, 2, 49-79, (2012) · Zbl 1281.41002 [16] Poghosyan, A., On some optimizations of trigonometric interpolation using Fourier discrete coefficients, Armenian Journal of Mathematics, 4, 2, 80-97, (2012) · Zbl 1281.41003 [17] Poghosyan, A., On a convergence of the Fourier-Pade interpolation, Armenian Journal of Mathematics, 5, 1, 1-25, (2013) · Zbl 1283.41013 [18] Poghosyan, A., On a fast convergence of the rational-trigonometric-polynomial interpolation, Advances in Numerical Analysis, (2013) · Zbl 1302.41020 [19] Poghosyan, A., On a convergence of the rational-trigonometric-polynomial approximations realized by the roots of the Laguerre polynomials, Natsionalnaya Akademiya Nauk Armenii. Izvestiya. Matematika, 48, 6, 82-91, (2013) · Zbl 1302.41020 · doi:10.3103/S1068362313060101 [20] Poghosyan, A., Asymptotic behavior of the Krylov-Lanczos interpolation, Analysis and Applications, 7, 2, 199-211, (2009) · Zbl 1171.42301 · doi:10.1142/S0219530509001359 [21] Kac, V.; Cheung, P., Quantum Calculus, (2001), New York, NY, USA: Springer, New York, NY, USA [22] Barkhudaryan, A.; Barkhudaryan, R.; Poghosyan, A., Asymptotic behavior of Eckhoff’s method for Fourier series convergence acceleration, Analysis in Theory and Applications, 23, 3, 228-242, (2007) · Zbl 1150.42002 · doi:10.1007/s10496-007-0228-0 [23] Eckhoff, K. S., Accurate and efficient reconstruction of discontinuous functions from truncated series expansions, Mathematics of Computation, 61, 204, 745-763, (1993) · Zbl 0790.65014 · doi:10.1090/S0025-5718-1993-1195430-1 [24] Eckhoff, K. S., Accurate reconstructions of functions of finite regularity from truncated Fourier series expansions, Mathematics of Computation, 64, 210, 671-690, (1995) · Zbl 0830.65144 · doi:10.2307/2153445 [25] Eckhoff, K. S., On a high order numerical method for functions with singularities, Mathematics of Computation, 67, 223, 1063-1087, (1998) · Zbl 0895.65067 · doi:10.1090/S0025-5718-98-00949-1 [26] Krylov, A., On approximate calculations. Lectures delivered in 1906, (1907), St. Petersburg, Russia: Tipolitography of Birkenfeld, St. Petersburg, Russia [27] Lanczos, C., Discourse on Fourier series. Discourse on Fourier series, Classics in Applied Mathematics, 76, (2016), Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA · Zbl 1404.42001 [28] Poghosyan, A., On an auto-correction phenomenon of the Krylov-Gottlieb-Eckhoff method, IMA Journal of Numerical Analysis (IMAJNA), 31, 2, 512-527, (2011) · Zbl 1218.65155 · doi:10.1093/imanum/drp043 [29] Abramowitz, M.; Stegun, I. A., Handbook of Mathematical Functions with Formulas, Graphs, And Mathematical Tables. Handbook of Mathematical Functions with Formulas, Graphs, And Mathematical Tables, National Bureau of Standards Applied Mathematics Series, 55, (1964), Washington, DC, USA: Superintendent of Documents, U.S. Government Printing Office, Washington, DC, USA · Zbl 0171.38503 [30] Riordan, J., Combinatorial Identities, (1979), New York, NY, USA: Wiley, New York, NY, USA This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.