×

A novel method for solving nonlinear Volterra integro-differential equation systems. (English) Zbl 1470.65211

Summary: An efficient iteration method is introduced and used for solving a type of system of nonlinear Volterra integro-differential equations. The scheme is based on a combination of the spectral collocation technique and the parametric iteration method. This method is easy to implement and requires no tedious computational work. Some numerical examples are presented to show the validity and efficiency of the proposed method in comparison with the corresponding exact solutions.

MSC:

65R20 Numerical methods for integral equations
34K07 Theoretical approximation of solutions to functional-differential equations
45J05 Integro-ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Jaswon, M. A.; Symm, G. T., Integral Equation Methods in Potential Theory and Elastostatics, (1977), London, UK: Academic Press, London, UK · Zbl 0414.45001
[2] Hatamzadeh-Varmazyar, S.; Naser-Moghadasi, M.; Babolian, E.; Masouri, Z., Numerical approach to survey the problem of electromagnetic scattering from resistive strips based on using a set of orthogonal basis functions, Progress in Electromagnetics Research, 81, 393-412, (2008) · doi:10.2528/PIER08012502
[3] Kyselka, A., Properties of systems of integro-differential equations in the statistics of polymer chains, Polymer Science U.S.S.R., 19, 11, 2852-2858, (1977) · doi:10.1016/0032-3950(77)90303-3
[4] Kheybari, S.; Darvishi, M. T.; Wazwaz, A. M., A semi-analytical algorithm to solve systems of integro-differential equations under mixed boundary conditions, Journal of Computational and Applied Mathematics, 317, 72-89, (2017) · Zbl 1357.65320 · doi:10.1016/j.cam.2016.11.029
[5] Kheybari, S.; Darvishi, M. T.; Wazwaz, A. M., A semi-analytical approach to solve integro-differential equations, Journal of Computational and Applied Mathematics, 317, 17-30, (2017) · Zbl 1357.65319 · doi:10.1016/j.cam.2016.11.011
[6] Bellomo, N.; Firmani, B.; Guerri, L., Bifurcation analysis for a nonlinear system of integro-differential equations modelling tumor-immune cells competition, Applied Mathematics Letters, 12, 2, 39-44, (1999) · Zbl 0932.92016 · doi:10.1016/S0893-9659(98)00146-3
[7] Wazwaz, A.-M., The existence of noise terms for systems of inhomogeneous differential and integral equations, Applied Mathematics and Computation, 146, 1, 81-92, (2003) · Zbl 1032.65114 · doi:10.1016/S0096-3003(02)00527-1
[8] Saberi-Nadjafi, J.; Tamamgar, M., The variational iteration method: a highly promising method for solving the system of integro-differential equations, Computers & Mathematics with Applications, 56, 2, 346-351, (2008) · Zbl 1155.65399 · doi:10.1016/j.camwa.2007.12.014
[9] Arikoglu, A.; Ozkol, I., Solutions of integral and integro—differential equation systems by using differential transform method, Computers & Mathematics with Applications, 56, 9, 2411-2417, (2008) · Zbl 1165.45300 · doi:10.1016/j.camwa.2008.05.017
[10] Ghomanjani, F.; Kiliçman, A.; Effati, S., Numerical solution for IVP in volterra type linear integrodifferential equations system, Abstract and Applied Analysis, 2013, (2013) · Zbl 1291.65380 · doi:10.1155/2013/490689
[11] Golbabai, A.; Mammadov, M.; Seifollahi, S., Solving a system of nonlinear integral equations by an {RBF} network, Computers & Mathematics with Applications. An International Journal, 57, 10, 1651-1658, (2009) · Zbl 1186.45009 · doi:10.1016/j.camwa.2009.03.038
[12] Berenguer, M. I.; Garralda-Guillem, A. I.; Ruiz Guiz Galán, M., An approximation method for solving systems of Volterra integro-differential equations, Applied Numerical Mathematics, 67, 126-135, (2013) · Zbl 1266.65207 · doi:10.1016/j.apnum.2011.03.007
[13] Maleknejad, K.; Safdari, H.; Nouri, M., Numerical solution of an integral equations system of the first kind by using an operational matrix with block pulse functions, International Journal of Systems Science, 42, 1, 195-199, (2011) · Zbl 1210.65204 · doi:10.1080/00207720903499824
[14] Maleknejad, K.; Basirat, B.; Hashemizadeh, E., A Bernstein operational matrix approach for solving a system of high order linear Volterra-Fredholm integro-differential equations, Mathematical and Computer Modelling, 55, 3-4, 1363-1372, (2012) · Zbl 1255.65245 · doi:10.1016/j.mcm.2011.10.015
[15] Ghorbani, A.; Saberi-Nadjafi, J., A piecewise-spectral parametric iteration method for solving the nonlinear chaotic Genesio system, Mathematical and Computer Modelling, 54, 1-2, 131-139, (2011) · Zbl 1225.65120 · doi:10.1016/j.mcm.2011.01.044
[16] Alavi, S. A.; Heydari, A.; Khellat, F., On convergence and error analysis of the parametric iteration method, International Journal of Applied Mathematical Research, 4, 1, 129, (2014) · doi:10.14419/ijamr.v4i1.3985
[17] Ghorbani, A.; Gachpazan, M., A Spectral Quasilinearization Parametric Method for Nonlinear Two-Point Boundary Value Problems, Bulletin of the Malaysian Mathematical Sciences Society · Zbl 1407.34027 · doi:10.1007/s40840-017-0467-y
[18] Weideman, J. A.; Reddy, S. C., A {MATLAB} differentiation matrix suite, ACM Transactions on Mathematical Software, 26, 4, 465-519, (2000) · doi:10.1145/365723.365727
[19] Damian, T., Matrix Based Operatorial Approach to Differential and Integral Problems, (2011), Romania: Babes Bolyai University of Cluj-Napoca, Romania
[20] Berenguer, M. I.; Garralda-Guillem, A. I., An approximation method for solving systems of Volterra integro-differential equations, Applied Numerical Mathematics, 67, 126-135, (2013) · Zbl 1266.65207 · doi:10.1016/j.apnum.2011.03.007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.