×

A deposition model: Riemann problem and flux-function limits of solutions. (English) Zbl 1470.35230

Summary: The Riemann solutions of a deposition model are shown. A singular flux-function limit of the obtained Riemann solutions is considered. As a result, it is shown that the Riemann solutions of the deposition model just converge to the Riemann solutions of the limit system, the scalar conservation law with a linear flux function involving discontinuous coefficient. Especially, for some initial data, the two-shock Riemann solution of the deposition model tends to the delta-shock Riemann solution of the limit system; by contrast, for some initial data, the two-rarefaction-wave Riemann solution of the deposition model tends to the vacuum Riemann solution of the limit system. Some numerical results exhibiting the formation processes of delta-shocks and vacuum states are presented.

MSC:

35L65 Hyperbolic conservation laws
35L45 Initial value problems for first-order hyperbolic systems

References:

[1] Toth, B.; Werner, W., Hydrodynamic Equation for a Deposition Model, Progress in Probability, 51, 227-248, (2002) · Zbl 1013.35053
[2] Toth, B.; Valko, B., Perturbation of singular equilibria of hyperbolic two-component systems: a universal hydrodynamic limit, Communications in Mathematical Physics, 256, 1, 111-157, (2005) · Zbl 1088.82019 · doi:10.1007/s00220-005-1314-9
[3] Nossal, R., Boundary movement of chemotactic bacterial populations, Mathematical Biosciences, 13, 3-4, 397-406, (1972) · Zbl 0337.92017 · doi:10.1016/0025-5564(72)90058-2
[4] Rascle, M., The riemann problem fora nonlinear non-strictly hyperbolic system arising in biology, Computers & Mathematics with Applications, 11, 1-3, 223-238, (1985) · Zbl 0579.35061 · doi:10.1016/0898-1221(85)90148-8
[5] Rascle, M., On some viscous perturbations of quasi-linear first order hyperbolic systems arising in biology, Nonlinear Partial Differential Equations, 17, 133-142, (1983) · Zbl 0533.35063
[6] Hu, J., The Riemann problem for a resonant nonlinear system of conservation laws with Dirac-measure solutions, Proceedings of the Royal Society of Edinburgh, Section: A Mathematics, 128, 1, 81-94, (1998) · Zbl 0893.35071 · doi:10.1017/S0308210500027165
[7] Gosse, L.; James, F., Numerical approximations of one-dimensional linear conservation equations with discontinuous coefficients, Mathematics of Computation, 69, 231, 987-1015, (2000) · Zbl 0949.65094 · doi:10.1090/S0025-5718-00-01185-6
[8] Gallouet, T., Hyperbolic equations and systems with discontinunous coefficients of source terms, Proceedings of Equadiff-11
[9] Tan, D. C.; Zhang, T.; Zheng, Y. X., Delta-shock waves as limits of vanishing viscosity for hyperbolic systems of conservation laws, Journal of Differential Equations, 112, 1, 1-32, (1994) · Zbl 0804.35077 · doi:10.1006/jdeq.1994.1093
[10] Bouchut, F., On zero pressure gas dynamics, Advances in Kinetic Theory and Computing, Series on Advances in Mathematics for Applied Sciences, 22, 171-190, (1994), River Edge, NJ, USA: World Scientific, River Edge, NJ, USA · Zbl 0863.76068
[11] Sheng, W.; Zhang, T., The Riemann problem for the transportation equations in gas dynamics, Memoirs of the American Mathematical Society, 137, 654, (1999) · Zbl 0913.35082 · doi:10.1090/memo/0654
[12] Le Floch, P., An existence and uniqueness result for two nonstrictly hyperbolic systems, Nonlinear Evolution Equations that Change Type, 27, 126-138, (1990), New York, NY, USA: Springer, New York, NY, USA · Zbl 0727.35083 · doi:10.1007/978-1-4613-9049-7_10
[13] Keyfitz, B. L.; Kranzer, H. C., A viscosity approximation to a system of conservation laws with no classical Riemann solution, Nonlinear Hyperbolic Problems, 1402, 185-197, (1990), Berlin, Germany: Springer, Berlin, Germany · Zbl 0704.35094 · doi:10.1007/bfb0083875
[14] Danilov, V. G.; Shelkovich, V. M., Dynamics of propagation and interaction of δ-shock waves in conservation laws systems, Journal of Differential Equations, 211, 2, 333-381, (2005) · Zbl 1072.35121 · doi:10.1016/j.jde.2004.12.011
[15] Danilov, V. G.; Shelkovich, V. M., Delta-shock wave type solution of hyperbolic systems of conservation laws, Quarterly of Applied Mathematics, 63, 3, 401-427, (2005) · doi:10.1090/S0033-569X-05-00961-8
[16] Cheng, H.; Yang, H., Delta shock waves in chromatography equations, Journal of Mathematical Analysis and Applications, 380, 2, 475-485, (2011) · Zbl 1217.35120 · doi:10.1016/j.jmaa.2011.04.002
[17] Li, J.; Zhang, T.; Yang, S., The Two-Dimensional Riemann Problem in Gas Dynamics. The Two-Dimensional Riemann Problem in Gas Dynamics, Pitman Monographs and Surveys in Pure and Applied Mathematics, 98, (1998), Harlow, England: Longman, Harlow, England · Zbl 0935.76002
[18] Yang, H., Riemann problems for a class of coupled hyperbolic systems of conservation laws, Journal of Differential Equations, 159, 2, 447-484, (1999) · Zbl 0948.35079 · doi:10.1006/jdeq.1999.3629
[19] Li, J., Note on the compressible Euler equations with zero temperature, Applied Mathematics Letters, 14, 4, 519-523, (2001) · Zbl 0986.76079 · doi:10.1016/S0893-9659(00)00187-7
[20] Chen, G.-Q.; Liu, H., Formation of delta-shocks and vacuum states in the vanishing pressure limit of solutions to the isentropic Euler equations, SIAM Journal on Mathematical Analysis, 34, 4, 925-938, (2003) · Zbl 1038.35035 · doi:10.1137/S0036141001399350
[21] Chen, G.-Q.; Liu, H., Concentration and cavitation in the vanishing pressure limit of solutions to the Euler equations for nonisentropic fluids, Physica D: Nonlinear Phenomena, 189, 1-2, 141-165, (2004) · Zbl 1098.76603 · doi:10.1016/j.physd.2003.09.039
[22] Yin, G.; Sheng, W., Delta shocks and vacuum states in vanishing pressure limits of solutions to the relativistic Euler equations for polytropic gases, Journal of Mathematical Analysis and Applications, 355, 2, 594-605, (2009) · Zbl 1167.35047 · doi:10.1016/j.jmaa.2009.01.075
[23] Yin, G.; Sheng, W., Delta wave formation and vacuum state in vanishing pressure limit for system of conservation laws to relativistic fluid dynamics, Zamm Journal of Applied Mathematics & Mechanics, 95, 49-65, (2013) · Zbl 1322.76077
[24] Mitrovic, D.; Nedeljkov, M., Delta shock waves as a limit of shock waves, Journal of Hyperbolic Differential Equations, 4, 4, 1-25, (2007) · Zbl 1145.35086 · doi:10.1142/S021989160700129X
[25] Zheng, Y., Systems of conservation laws with incomplete sets of eigenvectors everywhere, Advances in Nonlinear Partial Differential Equations & Related Areas, (1998) · Zbl 0929.35089
[26] Chang, T.; Hsiao, L., The Riemann Problem and Interaction of Waves in Gas Dynamics, (1989), Longman Scientific & Technical · Zbl 0698.76078
[27] Zheng, Y., Systems of Conservation Laws: Two-Dimensional Riemann Problems, (2001), Birkhauser · Zbl 0971.35002
[28] Nessyahu, H.; Tadmor, E., Nonoscillatory central differencing for hyperbolic conservation laws, Journal of Computational Physics, 87, 2, 408-463, (1990) · Zbl 0697.65068 · doi:10.1016/0021-9991(90)90260-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.