×

A version of uncertainty principle for quaternion linear canonical transform. (English) Zbl 1470.42016

Summary: In recent years, the two-dimensional (2D) quaternion Fourier and quaternion linear canonical transforms have been the focus of many research papers. In the present paper, based on the relationship between the quaternion Fourier transform (QFT) and the quaternion linear canonical transform (QLCT), we derive a version of the uncertainty principle associated with the QLCT. We also discuss the generalization of the Hausdorff-Young inequality in the QLCT domain.

MSC:

42B15 Multipliers for harmonic analysis in several variables
30G35 Functions of hypercomplex variables and generalized variables

References:

[1] Debnath, L.; Shah, F. A., Wavelet Transforms and Their Applications, (2010), USA: Birkhäuser, USA
[2] Mallat, S., A Wavelet Tour of Signal Processing, (1998), San Diego, Calif, USA: Academic Press, San Diego, Calif, USA · Zbl 1125.94306
[3] Feeman, T. G., The Mathematics of Medical Imaging, (2010), New York, NY, USA: Springer Science+Business Media, New York, NY, USA · Zbl 1191.00021 · doi:10.1007/978-0-387-92712-1
[4] Grochenig, K., Foundations of Time–Frequency Analysis, (2000), Boston, Mass, USA: Birkhauser, Boston, Mass, USA · doi:10.1007/978-1-4612-0003-1
[5] Bahri, M.; Ashino, R.; Vaillancourt, R., Continuous quaternion Fourier and wavelet transforms, International Journal of Wavelets, Multiresolution and Information Processing, 12, 4, (2014) · Zbl 1301.42015 · doi:10.1142/S0219691314600030
[6] Bahri, M.; Lawi, A.; Aris, N.; Saleh, A. F.; Nur, M., Relationships between convolution and correlation for fourier transform and quaternion fourier transform, International Journal of Mathematical Analysis, 7, 41-44, 2101-2109, (2013) · Zbl 1284.42007 · doi:10.12988/ijma.2013.36157
[7] Bahri, M., Quaternion algebra-valued wavelet transform, Applied Mathematical Sciences, 5, 69-72, 3531-3540, (2011) · Zbl 1247.42032
[8] Bahri, M., Construction of quaternion-valued wavelets, Matematika (Johor Bahru), 26, 1, 107-114, (2010)
[9] De Bie, H.; De Schepper, N.; Ell, T. A.; Rubrecht, K.; Sangwine, S. J., Connecting spatial and frequency domains for the quaternion Fourier transform, Applied Mathematics and Computation, 271, 581-593, (2015) · Zbl 1410.42012 · doi:10.1016/j.amc.2015.09.045
[10] Chen, L.-P.; Kou, K. I.; Liu, M.-S., Pitt’s inequality and the uncertainty principle associated with the quaternion fourier transform, Journal of Mathematical Analysis and Applications, 423, 1, 681-700, (2015) · Zbl 1425.42012 · doi:10.1016/j.jmaa.2014.10.003
[11] Hitzer, E. M., Directional uncertainty principle for quaternion fourier transform, Advances in Applied Clifford Algebras (AACA), 20, 2, 271-284, (2010) · Zbl 1198.42006 · doi:10.1007/s00006-009-0175-2
[12] Hitzer, E. M., Quaternion Fourier transform on quaternion fields and generalizations, Advances in Applied Clifford Algebras (AACA), 20, 3, 497-517, (2007) · Zbl 1143.42006 · doi:10.1007/s00006-007-0037-8
[13] Hitzer, E., General two-sided quaternion fourier transform, convolution and mustard convolution, Advances in Applied Clifford Algebras (AACA), 27, 1, 381-395, (2017) · Zbl 1368.42009 · doi:10.1007/s00006-016-0684-8
[14] Fei, M.; Xu, Y.; Yan, J., Real Paley-Wiener theorem for the quaternion Fourier transform, Complex Variables and Elliptic Equations. An International Journal, 62, 8, 1072-1080, (2017) · Zbl 1370.42009 · doi:10.1080/17476933.2016.1264939
[15] Yang, Y.; Dang, P.; Qian, T., Tighter uncertainty principles based on quaternion Fourier transform, Advances in Applied Clifford Algebras (AACA), 26, 1, 479-497, (2016) · Zbl 1338.42013 · doi:10.1007/s00006-015-0579-0
[16] Ell, T. A., Quaternion-fourier transforms for analysis of two-dimensional linear time-invariant partial differential systems, Proceeding of the 32nd Conference on Decision and Control, IEEE Control Systems Society
[17] Grigoryan, A. M.; Agaian, S. S., Tensor transform-based quaternion fourier transform algorithm, Information Sciences, 320, 62-74, (2015) · Zbl 1391.94078 · doi:10.1016/j.ins.2015.05.018
[18] Dubey, V. R., Quaternion Fourier transform for colour images, International Journal of Computer Science and Information Technologies, 5, 3, 4411-4416, (2014)
[19] Sangwine, S.; Ell, T., Hypercomplex Fourier transforms of color images, IEEE Transactions on Image Processing, 16, 1, 22-35, (2007) · Zbl 1279.94014 · doi:10.1109/TIP.2006.884955
[20] Bahri, M.; Zulfajar; Ashino, R., Convolution and correlation theorem for linear canonical transform and properties, Information, 17, 6B, 2509-2521, (2014) · Zbl 1323.42009
[21] Wei, D.; Ran, Q.; Li, Y., A convolution and correlation theorem for the linear canonical transform and its application, Circuits, Systems and Signal Processing, 31, 1, 301-312, (2012) · Zbl 1252.94035 · doi:10.1007/s00034-011-9319-4
[22] Xu, S.; Feng, L.; Chai, Y.; Hu, Y.; Huang, L., The properties of generalized offset linear canonical Hilbert transform and its applications, International Journal of Wavelets, Multiresolution and Information Processing, 15, 4, (2017) · Zbl 1378.44002 · doi:10.1142/S021969131750031X
[23] Bahri, M.; Ashino, R., Logarithmic uncertainty principle for quaternion linear canonical transform, Proceedings of the 2016 International Conference on Wavelet Analysis and Pattern Recognition, ICWAPR 2016 · doi:10.1109/ICWAPR.2016.7731634
[24] Kou, K. I.; Ou, J.-Y.; Morais, J., On uncertainty principle for quaternionic linear canonical transform, Abstract and Applied Analysis, 2013, (2013) · Zbl 1275.42012 · doi:10.1155/2013/725952
[25] Hu, X.-X.; Kou, K. I., Quaternion Fourier and linear canonical inversion theorems, Mathematical Methods in the Applied Sciences, 40, 7, 2421-2440, (2017) · Zbl 1362.42012 · doi:10.1002/mma.4148
[26] Bahri, M.; Ashino, R., A simplified proof of uncertainty principle for quaternion linear canonical transform, Abstract and Applied Analysis, (2016) · Zbl 1470.42013 · doi:10.1155/2016/5874930
[27] Kou, K. I.; Ou, J.; Morais, J., Uncertainty principles associated with quaternionic linear canonical transforms, Mathematical Methods in the Applied Sciences, 39, 10, 2722-2736, (2016) · Zbl 1407.94037 · doi:10.1002/mma.3724
[28] Bülow, T., Hypercomplex Spectral Signal Representations for the Processing and Analysis of Images [PhD Thesis], (1999), Germany: University of Kiel, Germany
[29] Bahri, M., A modified uncertainty principle for two-sided quaternion Fourier transform, Advances in Applied Clifford Algebras (AACA), 26, 2, 513-527, (2016) · Zbl 1342.42009 · doi:10.1007/s00006-015-0617-y
[30] Zhang, Y.-N.; Li, B.-Z., Novel uncertainty principles for two-sided quaternion linear canonical transform, Advances in Applied Clifford Algebras (AACA), 28, 15, (2018) · Zbl 1392.81164 · doi:10.1007/s00006-018-0828-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.