zbMATH — the first resource for mathematics

Inégalités de Morse pour la \(d''\)-cohomologie sur une variété holomorphe non compacte. (Morse inequalities for the \(d''\)-cohomology on non-compact analytic manifolds). (French) Zbl 0693.32016
The aim of this paper is to present some Morse inequalities for the d\({}''\)-cohomology of an analytic non compact manifold; using these results an estimation for the Monge-Ampère operator on a strong m- convex manifold is proved.
Reviewer: I.Mihut

32L10 Sheaves and cohomology of sections of holomorphic vector bundles, general results
32F10 \(q\)-convexity, \(q\)-concavity
58E05 Abstract critical point theory (Morse theory, Lyusternik-Shnirel’man theory, etc.) in infinite-dimensional spaces
Full Text: DOI Numdam EuDML
[1] J.-P. DEMAILLY , Champs magnétiques et inégalités de Morse pour la d”-cohomologie [Ann. Inst. Fourier (Grenoble), t. XXXV, n^\circ 4, 1985 , p. 189-229]. Numdam | MR 87d:58147 | Zbl 0565.58017 · Zbl 0565.58017
[2] J.-P. DEMAILLY , Sur l’identité de Kodaira-Nakano en géométrie hermitienne [Séminaire P. Lelong-P. Dolbeault-H. Skoda (Analyse), 1983 / 1984 , p. 88-97, Lecture Notes in Math., n^\circ 1198, Springer, 1986 ]. Zbl 0594.32031 · Zbl 0594.32031
[3] J.-P. DEMAILLY , Sur les théorèmes d’annulation et de finitude de T. Ohsawa et O. Abdekader [Séminaire P. Lelong-P. Dolbeault-H. Skoda (Analyse), 1985 / 1986 , Lecture Notes in Math., n^\circ 1295, Springer, 1987 ]. Zbl 0691.32009 · Zbl 0691.32009
[4] L. HÖRMANDER , An Introduction to Complex Analysis in Several Variables , North-Holland Publishing Company, 2nd edition, 1973 . Zbl 0271.32001 · Zbl 0271.32001
[5] Y.-T. SIU , Calculus Inequalities Derived from Holomorphic Morse Inequalities , Prépublication, 1987 [Math. Annalen (à paraître)]. Article | Zbl 0701.32010 · Zbl 0701.32010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.