×

zbMATH — the first resource for mathematics

The pressure in the Huang-Yang-Luttinger model of an interacting Boson gas. (English) Zbl 0693.60089
Summary: This completes our study of the equilibrium thermodynamics of the Huang- Yang-Luttinger model of a boson gas with a hard-sphere repulsion. In an earlier paper, see the preceding review, Zbl 0693.60088, we obtained a lower bound on the pressure, but our proof of an upper bound held only for a truncated version of the model.
In this paper we establish an upper bound on the pressure in the full model; the upper and lower bounds coincide and provide a variational formula for the pressure. The proof relies on recent second-level large deviation results for the occupation measure of the free boson gas.

MSC:
60K35 Interacting random processes; statistical mechanics type models; percolation theory
82B05 Classical equilibrium statistical mechanics (general)
60F10 Large deviations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Huang, K., Yang, C. N., Luttinger, J. M.: Imperfect bose gas with hard-sphere interactions. Phys. Rev.105, 776–784 (1957) · Zbl 0077.21001 · doi:10.1103/PhysRev.105.776
[2] Thouless, D. J.: The quantum mechanics of many-body systems. New York: Academic Press 1961 · Zbl 0103.23502
[3] van den Berg, M., Lewis, J. T., Pulé, J. V.: The large deviation principle and some models of an interacting boson gas. Commun. Math. Phys.118, 61–85 (1988) · Zbl 0679.76124 · doi:10.1007/BF01218477
[4] van den Berg, M., Dorlas, T. C., Lewis, J. T., Pulé, J. V.: A perturbed meanfield model of an interacting boson gas and the large deviation principle. Commun. Math. Phys.127, 41–69 (1990) · Zbl 0693.60088 · doi:10.1007/BF02096493
[5] Varadhan, S. R. S.: Asymptotic probabilities and differential equations. Commun. Pure Appl. Math.19, 261–286 (1966) · Zbl 0147.15503 · doi:10.1002/cpa.3160190303
[6] van den Berg, M., Lewis, J. T., Pulé J. V.: A general theory of Bose-Einstein condensation. Helv. Phys. Acta59, 1271–1288 (1986)
[7] Landau, L. D., Lifshitz, E. M.: Statistical Physics, 3rd. ed. London: Pergamon Press 1959 · Zbl 0080.19702
[8] van den Berg, M., Lewis, J. T., Pulé, J. V.: Large deviations and the boson gas. In Stochastic mechanics and stochastic processes. Proceedings, Swansea 1986. Truman, A., Davies, I. M. (eds.). Lecture Notes in Mathematics, vol. 1325. Berlin, Heidelberg, New York: Springer 1988 · Zbl 0648.60107
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.