Celeux, Gilles; Diebolt, Jean Une version de type recuit simulé de l’algorithme EM. (A simulated annealing type EM algorithm). (French) Zbl 0693.62035 C. R. Acad. Sci., Paris, Sér. I 310, No. 3, 119-124 (1990). Summary: The EM algorithm concerns maximum likelihood estimation for incomplete data. We present a simulated annealing type EM algorithm: SAEM. This algorithm is an adaptation of the stochastic EM algorithm (SEM) that we have previously developed [see Rev. Stat. Appl. 34, No.2, 35-52 (1986)]. Like SEM, SAEM overcomes most of the well-known limitations of EM. Moreover, SAEM performs better for small samples. Here, we focus on the mixture problem. We state a theorem which asserts that each SAEM sequence converges a.s. to a local maximizer of the likelihood function. Cited in 4 Documents MSC: 62F99 Parametric inference 65C99 Probabilistic methods, stochastic differential equations Keywords:maximum likelihood estimation for incomplete data; simulated annealing type EM algorithm; SAEM; stochastic EM algorithm; SEM; mixture problem; local maximizer of the likelihood function PDF BibTeX XML Cite \textit{G. Celeux} and \textit{J. Diebolt}, C. R. Acad. Sci., Paris, Sér. I 310, No. 3, 119--124 (1990; Zbl 0693.62035)