zbMATH — the first resource for mathematics

The electric field in the conductive half space as a model in mining and petroleum prospecting. (English) Zbl 0693.65088
Starting from Maxwell’s equation, the authors derive a mathematical model which can be used for computing the propagation of the electric field in the substratum provided that the source current and the electromagnetic characteristics of the material are known.
The medium under investigation is actually a union of two half spaces: (i) a homogeneous nonconductive half space, the air; (ii) a non homogeneous conductive half space, the substratum. In the mining and petroleum prospecting a knowledge of the electric field in the conductive half space substratum is required. Thus to avoid the computation of the solution in the air, the homogeneous non-conductive half space is substituted by a non-local boundary condition.
For this purpose the classical integral equation technique is used. A variational formulation of the problem whose solution is the electric field in the substratum is given. Finally the standard finite element method is used for computing the numerical solution. The numerical results are presented graphically.
Reviewer: K.N.Srivastava

65Z05 Applications to the sciences
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
35Q99 Partial differential equations of mathematical physics and other areas of application
35R30 Inverse problems for PDEs
78A55 Technical applications of optics and electromagnetic theory
86A20 Potentials, prospecting
78M10 Finite element, Galerkin and related methods applied to problems in optics and electromagnetic theory
Full Text: DOI
[1] ’Approximation de la diffraction d’ondes èlastiques, une nouvelle approche (I, II, III),’ Reports 91, 96, 98, Ecole Polytechnique, 1983.
[2] , and , ’Etude numèrique d’un modèle pour les équations de Maxwell en milieu conducteur tridimensionnel,’ INRIA Report, 1988.
[3] and , Analyse Mathématique et Méthodes Numériques pour le sciences et les Techniques, Vol. 2, Masson, Paris, 1985.
[4] Douglas, SIAM J. Num. Anal. 7 pp 575– (1970)
[5] and , ’Finite element approximation of the Navier Stokes equations,’ Lecture Notes in Mathematics no. 749, springer Verlag, Berlin, 1979.
[6] ’Etude mathématique et numérique d’un modèle de propagation du champ électro-magnétique dans une expèrience de prospection géophysique,’ Thesis, University Paris Ix, 1985.
[7] Goldman, Geophysics 51 pp 1450– (1986)
[8] Johnson, Math. Comp. 35 pp 1063– (1980)
[9] and , ’Etude mathématique d’un modèle pour les équations de Maxwell en milieu conducteur tridimensionnel,’ INRIA Report no. 560, 1986.
[10] and ’Propagation du champ électrique dans un milieu conducteur à symétrie radiale,’ INRIA Report, 1988.
[11] ’Etude mathématique et numérique de la propagation d’un champ electrique en milieu conducteur tridimensionnel,’ Thesis, University Paris Ix, 1987.
[12] Contróle Optimal des Systèmes Gouvernés par des Équations aux Dérivées Partielles, Dunod, Paris, 1968.
[13] Methods of Numerical Mathematics, Springer, Berlin, 1982. · doi:10.1007/978-1-4613-8150-1
[14] Meijerinck, Math. Comp. 31 pp 148– (1977)
[15] ’Approximation des équations intégrales en mécanique et en physique,’ Summer School CEA-INRIA-Edf, 1977.
[16] Nedelec, Numer. Math. 35 (1980)
[17] Oristaglio, Geophysics 39 pp 870– (1984)
[18] ’Problème mixtes pour le système de Maxweli,’ Ann. Fac. Sci., Toulouse Iv, 1982.
[19] Thérie des Distributions, Hermann, 1966.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.