Ben Dhia, H.; Hadhri, T. Existence result and discontinuous finite element discretization for a plane stresses Hencky problem. (English) Zbl 0693.73022 Math. Methods Appl. Sci. 11, No. 2, 169-184 (1989). The authors propose and analyze a discontinuous finite element method for a plane stress Hencky problem. Relaxing the boundary condition on that part of the boundary, where the plate is clamped, they develop existence results justifying the relaxation not only from the mathematical point of view but also from a physical one. For a finite element discretization they prove an existence result and show the convergence to the original solution in a weak sense. Numerical tests are not presented in this work but the authors give references where examples may be found. Reviewer: N.Herrmann Cited in 3 Documents MSC: 74S30 Other numerical methods in solid mechanics (MSC2010) 65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs 49N15 Duality theory (optimization) 49Q20 Variational problems in a geometric measure-theoretic setting 65D99 Numerical approximation and computational geometry (primarily algorithms) Keywords:Hencky body; weak convergence; subsequence of discrete solutions; displacement problem; convex optimization problem; space of integrable displacement fields; deformations; bounded measures; relaxation PDFBibTeX XMLCite \textit{H. Ben Dhia} and \textit{T. Hadhri}, Math. Methods Appl. Sci. 11, No. 2, 169--184 (1989; Zbl 0693.73022) Full Text: DOI References: [1] Ben Dhia, Algorithmes et Résolution Numérique [2] and , ’Méthode d’éléments finis discontinus pour la plasticité et applications à la rupture’, Comm. au 18éme Cong. National d’Analyse Numérique, Puy St. Vincent, France, 20-25 May 1985. [3] Thesis of the University of Paris 6, 1987. [4] and , Analyse Convex et Problèmes Variationnels, Dunod, Paris, 1974. [5] Cours de Mécanique des Milieux continus, Vol. 1, Masson, Paris, 1973. [6] Hadhri, RAIRO, M2AN 19 pp 235– (1985) [7] Hadhri, C. R. Acad. Sc. Paris 301 pp 687– (1985) [8] ’Convex function of a measure and application to a problem of nonhomogeneous elastoplastic material’, to appear. [9] ’Error estimates for some finite element methods for a model problem in perfect plasticity’, Meeting on ’Problemi Mathematici Nella Meccanica Dei Continuf, Trento, Italy, 12-17 January, 1981. [10] Kohn, Int. J. Applied Mathematics and Optimization 10 pp 1– (1983) [11] ’Sur la théorie et l’analyse numérique de problèmes de plasticité’, Thèse d’Etat, University of Paris 6, 1977. [12] Convex Analysis, Princeton, 1970. [13] Suquet, C. R. Acad. Sc. Paris 286 pp 1129– (1978) [14] Suquet, C. R. Acad. Sc. Paris 286 pp 1201– (1978) [15] ’Plasticité et homogénéisation’, Thèse dapos;Etat, University of Paris 6, 1982. [16] Problèmes Variationnels en Plasticité, Gauthiers-Villars, Paris, 1983. [17] Temam, Journal de Mécanique 19 pp 493– (1980) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.