×

Diagnostics analysis for skew-normal linear regression models: applications to a quality of life dataset. (English) Zbl 1398.62203

Summary: The skew-normal distribution has been used successfully in various statistical applications. The main purpose of this paper is to consider local influence analysis, which is recognized as an important step of data analysis. Motivated to simplify expressions of the conditional expectation of the complete-data log-likelihood function, used in the EM algorithm, diagnostic measures are derived from the case-deletion approach and the local influence approach inspired by H. Zhu et al. [Biometrika 88, No. 3, 727–737 (2001; Zbl 1006.62021)] and H.-T. Zhu and S.-Y. Lee [J. R. Stat. Soc., Ser. B, Stat. Methodol. 63, No. 1, 111–126 (2001; Zbl 0976.62071)]. Finally, the results obtained are applied to a dataset from a study to evaluate quality of life (QOL) and to identify its associated factors in climacteric women with a history of breast cancer.

MSC:

62J20 Diagnostics, and linear inference and regression
62J05 Linear regression; mixed models
62H12 Estimation in multivariate analysis
62P10 Applications of statistics to biology and medical sciences; meta analysis

Software:

sn
PDF BibTeX XML Cite
Full Text: DOI Euclid

References:

[1] Azevedo, C. L. N., Bolfarine, H. and Andrade, D. F. (2011). Bayesian inference for a skew-normal IRT model under the centred parameterization. Comput. Statist. Data Anal.55, 353-365. · Zbl 1247.62082
[2] Azzalini, A. (1985). A class of distributions which includes the normal ones. Scand. J. Stat.12, 171-178. · Zbl 0581.62014
[3] Azzalini, A. (2005). The skew-normal distribution and related multivariate families. Scand. J. Stat.32, 159-188. · Zbl 1091.62046
[4] Azzalini, A. and Capitanio, A. (1999). Statistical applications of the multivariate skew-normal distribution. J. R. Stat. Soc. Ser. B. Stat. Methodol.61, 579-602. · Zbl 0924.62050
[5] Conde, D. M., Pinto-Neto, A. M., Cabello, C., Santos-Sá, D., Costa-Paiva, C. and Martinez, E. S. (2005). Quality of life in Brazilian breast cancer survivors age 45-65 years: Associated factors. Breast J.11, 425-432.
[6] Cook, R. D. (1977). Detection of influential observation in linear regression. Technometrics19, 5-18. · Zbl 0371.62096
[7] Cook, R. D. (1986). Assessment of local influence. J. R. Stat. Soc. Ser. B. Stat. Methodol.48, 133-169. · Zbl 0608.62041
[8] Cook, R. D. and Weisberg, S. (1982). Residuals and Influence in Regression. Boca Raton, FL: Chapman & Hall/CRC. · Zbl 0564.62054
[9] Dagne, G. A. (2016). Bayesian segmental growth mixture Tobit models with skew distributions. Comput. Statist.31, 121-137. · Zbl 1342.65028
[10] Dempster, A., Laird, N. and Rubin, D. (1977). Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B. Stat. Methodol.39, 1-38. · Zbl 0364.62022
[11] Ferreira, C. S., Lachos, V. H. and Bolfarine, H. (2015). Inference and diagnostics in skew scale mixtures of normal regression models. J. Stat. Comput. Simul.85, 517-537.
[12] Galea-Rojas, M., Paula, G. A. and Bolfarine, H. (1997). Local influence in elliptical linear regression models. Statistician46, 71-79.
[13] Hill, M. A. and Dixon, W. J. (1982). Robustness in real life: A study of clinical laboratory data. Biometrics38, 377-396.
[14] Lachos, V. H., Montenegro, L. C. and Bolfarine, H. (2008). Inference and influence diagnostics for skew-normal null intercept measurement errors models. J. Stat. Comput. Simul.78, 395-419. · Zbl 1136.62022
[15] Lachos, V. H., Bolfarine, H., Arellano-Valle, R. B. and Montenegro, L. C. (2007). Likelihood based inference for multivariate skew-normal regression models. Comm. Statist. Theory Methods36, 1769-1786. · Zbl 1124.62037
[16] Lange, K. L., Little, R. and Taylor, J. (1989). Robust statistical modeling using \(t\) distribution. J. Amer. Statist. Assoc.84, 881-896.
[17] Lee, S. X. and McLachlan, G. J. (2013). On mixtures of skew normal and skew \(t\)-distributions. Adv. Data Anal. Classif.7, 241-266. · Zbl 1273.62115
[18] Lee, S. Y. and Xu, L. (2004). Influence analysis of nonlinear mixed-effects models. Comput. Statist. Data Anal.45, 321-341. · Zbl 1429.62280
[19] Liu, S. Z. (2000). On local influence for elliptical linear models. Statist. Papers41, 211-224. · Zbl 0948.62054
[20] Lu, B. and Song, X.-Y. (2006). Local influence of multivariate probit latent variable models. J. Multivariate Anal.97, 1783-1798. · Zbl 1099.62063
[21] Massuia, M. B., Cabral, C. R. B., Matos, L. A. and Lachos, V. H. (2015). Influence diagnostics for Student-t censored linear regression models. Statistics49, 1074-1094. · Zbl 1382.62050
[22] Rodríguez, C. L. B. and Branco, M. D. (2007). Bayesian inference for the skewness parameter of the scalar skew-normal distribution. Braz. J. Probab. Stat.21, 141-163. · Zbl 1319.62057
[23] Sahu, S. K., Dey, D. K. and Branco, M. D. (2003). A new class of multivariate distributions with applications to Bayesian regression models. Canad. J. Statist.31, 129-150. · Zbl 1039.62047
[24] Verbeke, G. and Molenberghs, G. (2000). Linear Mixed Models for Longitudinal Data. New York: Springer. · Zbl 0956.62055
[25] Wei, B. C., Qu, Y. Q. and Fung, W. K. (1998). Generalized leverage and its applications. Scand. J. Stat.25, 25-37. · Zbl 0905.62070
[26] Zeller, C. B., Lachos, V. H. and Vilca, F. V. (2014). Influence diagnostics for Grubbs’s model with asymmetric heavy-tailed distributions. Statist. Papers55, 671-690. · Zbl 1336.62085
[27] Zhu, H. and Lee, S. (2001). Local influence for incomplete-data models. J. R. Stat. Soc. Ser. B. Stat. Methodol.63, 111-126. · Zbl 0976.62071
[28] Zhu, H., Lee, S., Wei, B. and Zhou, J. (2001). Case-deletion measures for models with incomplete data. Biometrika88, 727-737. · Zbl 1006.62021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.