×

zbMATH — the first resource for mathematics

Some remarks on protein attribute prediction and pseudo amino acid composition. (English) Zbl 1405.92212
Summary: With the accomplishment of human genome sequencing, the number of sequence-known proteins has increased explosively. In contrast, the pace is much slower in determining their biological attributes. As a consequence, the gap between sequence-known proteins and attribute-known proteins has become increasingly large. The unbalanced situation, which has critically limited our ability to timely utilize the newly discovered proteins for basic research and drug development, has called for developing computational methods or high-throughput automated tools for fast and reliably identifying various attributes of uncharacterized proteins based on their sequence information alone. Actually, during the last two decades or so, many methods in this regard have been established in hope to bridge such a gap. In the course of developing these methods, the following things were often needed to consider: (1) benchmark dataset construction, (2) protein sample formulation, (3) operating algorithm (or engine), (4) anticipated accuracy, and (5) web-server establishment. In this review, we are to discuss each of the five procedures, with a special focus on the introduction of pseudo amino acid composition (PseAAC), its different modes and applications as well as its recent development, particularly in how to use the general formulation of PseAAC to reflect the core and essential features that are deeply hidden in complicated protein sequences.

MSC:
92D20 Protein sequences, DNA sequences
92-02 Research exposition (monographs, survey articles) pertaining to biology
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Altschul, S.F., Evaluating the statistical significance of multiple distinct local alignments, (), 1-14
[2] Anand, A.; Suganthan, P.N., Multiclass cancer classification by support vector machines with class-wise optimized genes and probability estimates, J. theor. biol., 259, 533-540, (2009) · Zbl 1402.92227
[3] Andraos, J., Kinetic plasticity and the determination of product ratios for kinetic schemes leading to multiple products without rate laws: new methods based on directed graphs, Can. J. chem., 86, 342-357, (2008)
[4] Ashburner, M.; Ball, C.A.; Blake, J.A.; Botstein, D.; Butler, H.; Cherry, J.M.; Davis, A.P.; Dolinski, K.; Dwight, S.S.; Eppig, J.T.; Harris, M.A.; Hill, D.P.; Issel-Tarver, L.; Kasarskis, A.; Lewis, S.; Matese, J.C.; Richardson, J.E.; Ringwald, M.; Rubin, G.M.; Sherlock, G., Gene ontology: tool for the unification of biology, Nat. genet., 25, 25-29, (2000)
[5] Cai, Y.D.; Chou, K.C., Nearest neighbour algorithm for predicting protein subcellular location by combining functional domain composition and pseudo-amino acid composition, Biochem. biophys. res. commun., 305, 407-411, (2003)
[6] Cai, Y.D.; Chou, K.C., Predicting enzyme subclass by functional domain composition and pseudo amino acid composition, J. proteome res., 4, 967-971, (2005)
[7] Cai, Y.D.; Chou, K.C., Predicting membrane protein type by functional domain composition and pseudo amino acid composition, J. theor. biol., 238, 395-400, (2006)
[8] Cai, Y.D.; Li, Y.X.; Chou, K.C., Using neural networks for prediction of domain structural classes, Biochim. biophys. acta, 1476, 1-2, (2000)
[9] Cai, Y.D.; Liu, X.J.; Chou, K.C., Artificial neural network model for predicting membrane protein types, J. biomol. struct. dynam., 18, 607-610, (2001)
[10] Cai, Y.D.; Zhou, G.P.; Chou, K.C., Support vector machines for predicting membrane protein types by using functional domain composition, Biophys. J., 84, 3257-3263, (2003)
[11] Cai, Y.D.; Zhou, G.P.; Chou, K.C., Predicting enzyme family classes by hybridizing gene product composition and pseudo-amino acid composition, J. theor. biol., 234, 145-149, (2005)
[12] Cai, Y.D.; Pong-Wong, R.; Feng, K.; Jen, J.C.H.; Chou, K.C., Application of SVM to predict membrane protein types, J. theor. biol., 226, 373-376, (2004)
[13] Cai, Y.D.; He, J.; Li, X.; Feng, K.; Lu, L.; Kong, X.; Lu, W., Predicting protein subcellular locations with feature selection and analysis, Protein pept. lett., 17, 464-472, (2010)
[14] Call, M.E.; Wucherpfennig, K.W.; Chou, J.J., The structural basis for intramembrane assembly of an activating immunoreceptor complex, Nat. immunol., 11, 1023-1029, (2010)
[15] Camon, E.; Magrane, M.; Barrell, D.; Lee, V.; Dimmer, E.; Maslen, J.; Binns, D.; Harte, N.; Lopez, R.; Apweiler, R., The gene ontology annotation (GOA) database: sharing knowledge in uniprot with gene ontology, Nucl. acids res., 32, D262-6, (2004)
[16] Cedano, J.; Aloy, P.; P’erez-Pons, J.A.; Querol, E., Relation between amino acid composition and cellular location of proteins, J. mol. biol., 266, 594-600, (1997)
[17] Chen, C.; Chen, L.X.; Zou, X.Y.; Cai, P.X., Predicting protein structural class based on multi-features fusion, J. theor. biol., 253, 388-392, (2008) · Zbl 1398.92196
[18] Chen, C.; Chen, L.; Zou, X.; Cai, P., Prediction of protein secondary structure content by using the concept of Chou’s pseudo amino acid composition and support vector machine, Protein pept. lett., 16, 27-31, (2009)
[19] Chen, C.; Zhou, X.; Tian, Y.; Zou, X.; Cai, P., Predicting protein structural class with pseudo-amino acid composition and support vector machine fusion network, Anal. biochem., 357, 116-121, (2006)
[20] Chen, C.; Tian, Y.X.; Zou, X.Y.; Cai, P.X.; Mo, J.Y., Using pseudo-amino acid composition and support vector machine to predict protein structural class, J. theor. biol., 243, 444-448, (2006)
[21] Chen, K.; Kurgan, L.A.; Ruan, J., Prediction of protein structural class using novel evolutionary collocation-based sequence representation, J. comput. chem., 29, 1596-1604, (2008)
[22] Chen, L.; Feng, K.Y.; Cai, Y.D.; Chou, K.C.; Li, H.P., Predicting the network of substrate – enzyme-product triads by combining compound similarity and functional domain composition, BMC bioinform., 11, 293, (2010)
[23] Chen, Y.; Han, K., BSFINDER: finding binding sites of HCV proteins using a support vector machine, Protein pept. lett., 16, 373-382, (2009)
[24] Chen, Y.L.; Li, Q.Z., Prediction of apoptosis protein subcellular location using improved hybrid approach and pseudo amino acid composition, J. theor. biol., 248, 377-381, (2007)
[25] Chou, K.C., A novel approach to predicting protein structural classes in a (20-1)-D amino acid composition space, Proteins: struct. funct. genet., 21, 319-344, (1995)
[26] Chou, K.C., The convergence – divergence duality in lectin domains of the selectin family and its implications, FEBS lett., 363, 123-126, (1995)
[27] Chou, K.C., A key driving force in determination of protein structural classes, Biochem. biophys. res. commun., 264, 216-224, (1999)
[28] Chou, K.C., Review: prediction of protein structural classes and subcellular locations, Curr. protein pept. sci., 1, 171-208, (2000)
[29] Chou, K.C., Prediction of protein cellular attributes using pseudo amino acid composition, Proteins: struct. funct. genet., 43, 246-255, (2001), (Erratum: ibid., 2001, vol. 44, p. 60)
[30] Chou, K.C., Modelling extracellular domains of GABA-A receptors: subtypes 1, 2, 3, and 5, Biochem. biophys. res. commun., 316, 636-642, (2004)
[31] Chou, K.C., Review: structural bioinformatics and its impact to biomedical science, Curr. med. chem., 11, 2105-2134, (2004)
[32] Chou, K.C., Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes, Bioinformatics, 21, 10-19, (2005)
[33] Chou, K.C., Prediction of G-protein-coupled receptor classes, J. proteome res., 4, 1413-1418, (2005)
[34] Chou, K.C.; Zhang, C.T., A correlation coefficient method to predicting protein structural classes from amino acid compositions, Eur. J. biochem., 207, 429-433, (1992)
[35] Chou, K.C.; Zhang, C.T., Predicting protein folding types by distance functions that make allowances for amino acid interactions, J. biol. chem., 269, 22014-22020, (1994)
[36] Chou, K.C.; Zhang, C.T., Review: prediction of protein structural classes, Crit. rev. biochem. mol. biol., 30, 275-349, (1995)
[37] Chou, K.C.; Maggiora, G.M., Domain structural class prediction, Protein eng., 11, 523-538, (1998)
[38] Chou, K.C.; Elrod, D.W., Protein subcellular location prediction, Protein eng., 12, 107-118, (1999)
[39] Chou, K.C.; Cai, Y.D., Using functional domain composition and support vector machines for prediction of protein subcellular location, J. biol. chem., 277, 45765-45769, (2002)
[40] Chou, K.C.; Elrod, D.W., Bioinformatical analysis of G-protein-coupled receptors, J. proteome res., 1, 429-433, (2002)
[41] Chou, K.C.; Cai, Y.D., Predicting protein quaternary structure by pseudo amino acid composition, Proteins: struct. funct. genet., 53, 282-289, (2003)
[42] Chou, K.C.; Cai, Y.D., A new hybrid approach to predict subcellular localization of proteins by incorporating gene ontology, Biochem. biophys. res. commun., 311, 743-747, (2003)
[43] Chou, K.C.; Cai, Y.D., Prediction and classification of protein subcellular location: sequence-order effect and pseudo amino acid composition, J. cellul. biochem., 90, 1250-1260, (2003), (Addendum, ibid. 2004, vol. 91, p. 1085)
[44] Chou, K.C.; Cai, Y.D., Predicting enzyme family class in a hybridization space, Protein sci., 13, 2857-2863, (2004)
[45] Chou, K.C.; Cai, Y.D., Predicting protein structural class by functional domain composition, Biochem. biophys. res. commun., 321, 1007-1009, (2004), (Corrigendum: ibid., 2005, vol. 329, p. 1362)
[46] Chou, K.C.; Cai, Y.D., Using GO-pseaa predictor to predict enzyme sub-class, Biochem. biophys. res. commun., 325, 506-509, (2004)
[47] Chou, K.C.; Cai, Y.D., Prediction of protein subcellular locations by GO-fund-pseaa predictor, Biochem. biophys. res. commun., 320, 1236-1239, (2004)
[48] Chou, K.C.; Cai, Y.D., Predicting subcellular localization of proteins by hybridizing functional domain composition and pseudo-amino acid composition, J. cell biochem., 91, 1197-1203, (2004)
[49] Chou, K.C.; Cai, Y.D., Using GO-pseaa predictor to identify membrane proteins and their types, Biochem. biophys. res. comm., 327, 845-847, (2005)
[50] Chou, K.C.; Shen, H.B., Large-scale predictions of Gram-negative bacterial protein subcellular locations, J. proteome res., 5, 3420-3428, (2006)
[51] Chou, K.C.; Shen, H.B., Predicting eukaryotic protein subcellular location by fusing optimized evidence-theoretic K-nearest neighbor classifiers, J. proteome res., 5, 1888-1897, (2006)
[52] Chou, K.C.; Shen, H.B., Hum-ploc: a novel ensemble classifier for predicting human protein subcellular localization, Biochem. biophys. res. commun., 347, 150-157, (2006)
[53] Chou, K.C.; Shen, H.B., Predicting protein subcellular location by fusing multiple classifiers, J. cell biochem., 99, 517-527, (2006)
[54] Chou, K.C.; Cai, Y.D., Predicting protein – protein interactions from sequences in a hybridization space, J. proteome res., 5, 316-322, (2006)
[55] Chou, K.C.; Shen, H.B., Large-scale plant protein subcellular location prediction, J. cell biochem., 100, 665-678, (2007)
[56] Chou, K.C.; Shen, H.B., Euk-mploc: a fusion classifier for large-scale eukaryotic protein subcellular location prediction by incorporating multiple sites, J. proteome res., 6, 1728-1734, (2007)
[57] Chou, K.C.; Shen, H.B., Review: recent progresses in protein subcellular location prediction, Anal. biochem., 370, 1-16, (2007)
[58] Chou, K.C.; Shen, H.B., Memtype-2L: A WEB server for predicting membrane proteins and their types by incorporating evolution information through pse-PSSM, Biochem. biophys. res. commun., 360, 339-345, (2007)
[59] Chou, K.C.; Shen, H.B., Protident: a web server for identifying proteases and their types by fusing functional domain and sequential evolution information, Biochem. biophys. res. commun., 376, 321-325, (2008)
[60] Chou, K.C.; Shen, H.B., Cell-ploc: a package of web servers for predicting subcellular localization of proteins in various organisms, Nat. protoc., 3, 153-162, (2008)
[61] Chou, K.C.; Shen, H.B., Review: recent advances in developing web-servers for predicting protein attributes, Natur. sci., 2, 63-92, (2009), (openly accessible at http://www.scirp.org/journal/NS/)
[62] Chou, K.C.; Shen, H.B., A new method for predicting the subcellular localization of eukaryotic proteins with both single and multiple sites: euk-mploc 2.0, Plos one, 5, e9931, (2010)
[63] Chou, K.C.; Shen, H.B., Cell-ploc 2.0: an improved package of web-servers for predicting subcellular localization of proteins in various organisms, Natur. sci., 2, 1090-1103, (2010), (openly accessible at http://www.scirp.org/journal/NS/)
[64] Chou, K.C.; Shen, H.B., Plant-mploc: a top-down strategy to augment the power for predicting plant protein subcellular localization, Plos one, 5, e11335, (2010)
[65] Chou, K.C.; Liu, W.; Maggiora, G.M.; Zhang, C.T., Prediction and classification of domain structural classes, Proteins: struct. funct. genet., 31, 97-103, (1998)
[66] Chou, P.Y., Prediction of protein structural classes from amino acid composition, (), 549-586
[67] Cover, T.M.; Hart, P.E., Nearest neighbour pattern classification, IEEE trans. inform. theor., IT-13, 21-27, (1967) · Zbl 0154.44505
[68] Denoeux, T., A K-nearest neighbor classification rule based on Dempster-Shafer theory, IEEE trans. syst. man cybernet., 25, 804-813, (1995)
[69] Diao, Y.; Ma, D.; Wen, Z.; Yin, J.; Xiang, J.; Li, M., Using pseudo amino acid composition to predict transmembrane regions in protein: cellular automata and Lempel-Ziv complexity, Amino acids, 34, 111-117, (2008)
[70] Ding, H.; Luo, L.; Lin, H., Prediction of cell wall lytic enzymes using Chou’s amphiphilic pseudo amino acid composition, Protein pept. lett., 16, 351-355, (2009)
[71] Ding, Y.S.; Zhang, T.L.; Chou, K.C., Prediction of protein structure classes with pseudo amino acid composition and fuzzy support vector machine network, Protein pept. lett., 14, 811-815, (2007)
[72] Du, P.; Li, Y., Prediction of protein submitochondria locations by hybridizing pseudo-amino acid composition with various physicochemical features of segmented sequence, BMC bioinform., 7, 518, (2006)
[73] Du, P.; Li, Y., Prediction of C-to-U RNA editing sites in plant mitochondria using both biochemical and evolutionary information, J. theor. biol., 253, 579-589, (2008)
[74] Du, P.; Cao, S.; Li, Y., Subchlo: predicting protein subchloroplast locations with pseudo-amino acid composition and the evidence-theoretic K-nearest neighbor (ET-KNN) algorithm, J. theor. biol., 261, 330-335, (2009) · Zbl 1403.92063
[75] Du, Q.S.; Jiang, Z.Q.; He, W.Z.; Li, D.P.; Chou, K.C., Amino acid principal component analysis (AAPCA) and its applications in protein structural class prediction, J. biomol. struct. dynam., 23, 635-640, (2006)
[76] Esmaeili, M.; Mohabatkar, H.; Mohsenzadeh, S., Using the concept of Chou’s pseudo amino acid composition for risk type prediction of human papillomaviruses, J. theor. biol., 263, 203-209, (2010) · Zbl 1406.92455
[77] Fang, Y.; Guo, Y.; Feng, Y.; Li, M., Predicting DNA-binding proteins: approached from Chou’s pseudo amino acid composition and other specific sequence features, Amino acids, 34, 103-109, (2008)
[78] Feng, K.Y.; Cai, Y.D.; Chou, K.C., Boosting classifier for predicting protein domain structural class, Biochem. biophys. res. commun., 334, 213-217, (2005)
[79] Feng, Y.E.; Luo, L.F., Use of tetrapeptide signals for protein secondary-structure prediction, Amino acids, 35, 607-614, (2008)
[80] Finn, R.D.; Mistry, J.; Schuster-Bockler, B.; Griffiths-Jones, S.; Hollich, V.; Lassmann, T.; Moxon, S.; Marshall, M.; Khanna, A.; Durbin, R.; Eddy, S.R.; Sonnhammer, E.L.; Bateman, A., Pfam: clans, web tools and services, Nucleic acids res., 34, D247-51, (2006)
[81] Gao, Q.B.; Ye, X.F.; Jin, Z.C.; He, J., Improving discrimination of outer membrane proteins by fusing different forms of pseudo amino acid composition, Anal. biochem., 398, 52-59, (2010)
[82] Gao, Q.B.; Jin, Z.C.; Ye, X.F.; Wu, C.; He, J., Prediction of nuclear receptors with optimal pseudo amino acid composition, Anal. biochem., 387, 54-59, (2009)
[83] Gao, Y.; Shao, S.H.; Xiao, X.; Ding, Y.S.; Huang, Y.S.; Huang, Z.D.; Chou, K.C., Using pseudo amino acid composition to predict protein subcellular location: approached with Lyapunov index, Bessel function, and Chebyshev filter, Amino acids, 28, 373-376, (2005)
[84] Georgiou, D.N.; Karakasidis, T.E.; Nieto, J.J.; Torres, A., Use of fuzzy clustering technique and matrices to classify amino acids and its impact to Chou’s pseudo amino acid composition, J. theor. biol., 257, 17-26, (2009) · Zbl 1400.92393
[85] Gu, F.; Chen, H., Evaluating long-term relationship of protein sequence by use of d-interval conditional probability and its impact on protein structural class prediction, Protein pept. lett., 16, 1267-1276, (2009)
[86] Gu, Q.; Ding, Y.S.; Zhang, T.L., Prediction of G-protein-coupled receptor classes in low homology using Chou’s pseudo amino acid composition with approximate entropy and hydrophobicity patterns, Protein pept. lett., 17, 559-567, (2010)
[87] Gu, Q.; Ding, Y.; Zhang, T.; Shen, Y., Prediction of G-protein-coupled receptor classes with pseudo amino acid composition, Shengwu yixue gongchengxue zazhi, 27, 500-504, (2010)
[88] Harris, M.A.; Clark, J.; Ireland, A.; Lomax, J.; Ashburner, M.; Foulger, R.; Eilbeck, K.; Lewis, S.; Marshall, B.; Mungall, C.; Richter, J.; Rubin, G.M.; Blake, J.A.; Bult, C.; Dolan, M.; Drabkin, H.; Eppig, J.T.; Hill, D.P.; Ni, L.; Ringwald, M.; Balakrishnan, R.; Cherry, J.M.; Christie, K.R.; Costanzo, M.C.; Dwight, S.S.; Engel, S.; Fisk, D.G.; Hirschman, J.E.; Hong, E.L.; Nash, R.S.; Sethuraman, A.; Theesfeld, C.L.; Botstein, D.; Dolinski, K.; Feierbach, B.; Berardini, T.; Mundodi, S.; Rhee, S.Y.; Apweiler, R.; Barrell, D.; Camon, E.; Dimmer, E.; Lee, V.; Chisholm, R.; Gaudet, P.; Kibbe, W.; Kishore, R.; Schwarz, E.M.; Sternberg, P.; Gwinn, M.; Hannick, L.; Wortman, J.; Berriman, M.; Wood, V.; de la Cruz, N.; Tonellato, P.; Jaiswal, P.; Seigfried, T.; White, R., The gene ontology (GO) database and informatics resource, Nucleic acids res., 32, D258-61, (2004)
[89] He, Z.S.; Zhang, J.; Shi, X.H.; Hu, L.L.; Kong, X.G.; Cai, Y.D.; Chou, K.C., Predicting drug – target interaction networks based on functional groups and biological features, Plos one, 5, e9603, (2010)
[90] Huang, T.; Shi, X.H.; Wang, P.; He, Z.; Feng, K.Y.; Hu, L.; Kong, X.; Li, Y.X.; Cai, Y.D.; Chou, K.C., Analysis and prediction of the metabolic stability of proteins based on their sequential features, subcellular locations and interaction networks, Plos one, 5, e10972, (2010)
[91] Jahandideh, S.; Abdolmaleki, P.; Jahandideh, M.; Asadabadi, E.B., Novel two-stage hybrid neural discriminant model for predicting proteins structural classes, Biophys. chem., 128, 87-93, (2007)
[92] Jahandideh, S.; Sarvestani, A.S.; Abdolmaleki, P.; Jahandideh, M.; Barfeie, M., Gamma-turn types prediction in proteins using the support vector machines, J. theor. biol., 249, 785-790, (2007)
[93] Jahandideh, S.; Hoseini, S.; Jahandideh, M.; Hoseini, A.; Disfani, F.M., Gamma-turn types prediction in proteins using the two-stage hybrid neural discriminant model, J. theor. biol., 259, 517-522, (2009) · Zbl 1402.92326
[94] Ji, G.; Wu, X.; Shen, Y.; Huang, J.; Quinn, Li, Q., A classification-based prediction model of messenger RNA polyadenylation sites, J. theor. biol., 265, 287-296, (2010) · Zbl 07020753
[95] Jiang, X.; Wei, R.; Zhao, Y.; Zhang, T., Using Chou’s pseudo amino acid composition based on approximate entropy and an ensemble of adaboost classifiers to predict protein subnuclear location, Amino acids, 34, 669-675, (2008)
[96] Jiang, X.; Wei, R.; Zhang, T.L.; Gu, Q., Using the concept of Chou’s pseudo amino acid composition to predict apoptosis proteins subcellular location: an approach by approximate entropy, Protein pept. lett., 15, 392-396, (2008)
[97] Kandaswamy, K.K.; Pugalenthi, G.; Moller, S.; Hartmann, E.; Kalies, K.U.; Suganthan, P.N.; Martinetz, T., Prediction of apoptosis protein locations with genetic algorithms and support vector machines through a new mode of pseudo amino acid composition, Protein pept. lett., 17, 1473-1479, (2010)
[98] Kannan, S.; Hauth, A.M.; Burger, G., Function prediction of hypothetical proteins without sequence similarity to proteins of known function, Protein pept. lett., 15, 1107-1116, (2008)
[99] Keller, J.M.; Gray, M.R.; Givens, J.A., A fuzzy k-nearest neighbours algorithm, IEEE trans. syst. man cybern., 15, 580-585, (1985)
[100] Klein, P., Prediction of protein structural class by discriminant analysis, Biochim. biophys. acta, 874, 205-215, (1986)
[101] Klein, P.; Delisi, C., Prediction of protein structural class from amino acid sequence, Biopolymers, 25, 1659-1672, (1986)
[102] Lee, V.; Camon, E.; Dimmer, E.; Barrell, D.; Apweiler, R., Who tangos with GOA?—use of gene ontology annotation (GOA) for biological interpretation of ‘-omics’ data and for validation of automatic annotation tools, In silico biol., 5, 5-8, (2005)
[103] Letunic, I.; Copley, R.R.; Pils, B.; Pinkert, S.; Schultz, J.; Bork, P., SMART 5: domains in the context of genomes and networks, Nucleic acids res., 34, D257-60, (2006)
[104] Levitt, M.; Chothia, C., Structural patterns in globular proteins, Nature, 261, 552-557, (1976)
[105] Li, F.M.; Li, Q.Z., Using pseudo amino acid composition to predict protein subnuclear location with improved hybrid approach, Amino acids, 34, 119-125, (2008)
[106] Li, F.M.; Li, Q.Z., Predicting protein subcellular location using Chou’s pseudo amino acid composition and improved hybrid approach, Protein pept. lett., 15, 612-616, (2008)
[107] Li, Z.C.; Zhou, X.B.; Dai, Z.; Zou, X.Y., Prediction of protein structural classes by Chou’s pseudo amino acid composition: approached using continuous wavelet transform and principal component analysis, Amino acids, 37, 415-425, (2009)
[108] Lin, H., The modified Mahalanobis discriminant for predicting outer membrane proteins by using Chou’s pseudo amino acid composition, J. theor. biol., 252, 350-356, (2008) · Zbl 1398.92076
[109] Lin, H.; Li, Q.Z., Predicting conotoxin superfamily and family by using pseudo amino acid composition and modified Mahalanobis discriminant, Biochem. biophys. res. commun., 354, 548-551, (2007)
[110] Lin, H.; Li, Q.Z., Using pseudo amino acid composition to predict protein structural class: approached by incorporating 400 dipeptide components, J. comput. chem., 28, 1463-1466, (2007)
[111] Lin, H.; Ding, H.; Feng-Biao Guo, F.B.; Zhang, A.Y.; Huang, J., Predicting subcellular localization of mycobacterial proteins by using Chou’s pseudo amino acid composition, Protein pept. lett., 15, 739-744, (2008)
[112] Lin, H.; Wang, H.; Ding, H.; Chen, Y.L.; Li, Q.Z., Prediction of subcellular localization of apoptosis protein using Chou’s pseudo amino acid composition, Acta biotheor., 57, 321-330, (2009)
[113] Lin, W.Z.; Xiao, X.; Chou, K.C., GPCR-GIA: a web-server for identifying G-protein coupled receptors and their families with grey incidence analysis, Protein eng. des. sel, 22, 699-705, (2009)
[114] Liu, H.; Yang, J.; Wang, M.; Xue, L.; Chou, K.C., Using Fourier spectrum analysis and pseudo amino acid composition for prediction of membrane protein types, The protein J., 24, 385-389, (2005)
[115] Liu, L.; He, D.; Yang, S.; Xu, Y., Applying chemometrics approaches to model and predict the binding affinities between the human amphiphysin SH3 domain and its peptide ligands, Protein pept. lett., 17, 246-253, (2010)
[116] Liu, T.; Zheng, X.; Wang, C.; Wang, J., Prediction of subcellular location of apoptosis proteins using pseudo amino acid composition: an approach from auto covariance transformation, Protein pept. lett., 17, 1263-1269, (2010)
[117] Liu, W.; Chou, K.C., Prediction of protein structural classes by modified Mahalanobis discriminant algorithm, J. protein chem., 17, 209-217, (1998)
[118] Mahalanobis, P.C., On the generalized distance in statistics, Proc. natl. inst. sci. India, 2, 49-55, (1936) · Zbl 0015.03302
[119] Marchler-Bauer, A.; Anderson, J.B.; Derbyshire, M.K.; DeWeese-Scott, C.; Gonzales, N.R.; Gwadz, M.; Hao, L.; He, S.; Hurwitz, D.I.; Jackson, J.D.; Ke, Z.; Krylov, D.; Lanczycki, C.J.; Liebert, C.A.; Liu, C.; Lu, F.; Lu, S.; Marchler, G.H.; Mullokandov, M.; Song, J.S.; Thanki, N.; Yamashita, R.A.; Yin, J.J.; Zhang, D.; Bryant, S.H., CDD: a conserved domain database for interactive domain family analysis, Nucleic acids res., 35, D237-40, (2007)
[120] Mardia, K.V.; Kent, J.T.; Bibby, J.M., Multivariate analysis: chapter 11 discriminant analysis; chapter 12 multivariate analysis of variance; chapter 13 cluster analysis, (1979), Academic Press London, pp. 322-381
[121] Metfessel, B.A.; Saurugger, P.N.; Connelly, D.P.; Rich, S.T., Cross-validation of protein structural class prediction using statistical clustering and neural networks, Protein sci., 2, 1171-1182, (1993)
[122] Mohabatkar, H., Prediction of cyclin proteins using Chou’s pseudo amino acid composition, Protein pept. lett., 17, 1207-1214, (2010)
[123] Mondal, S.; Bhavna, R.; Mohan Babu, R.; Ramakumar, S., Pseudo amino acid composition and multi-class support vector machines approach for conotoxin superfamily classification, J. theor. biol., 243, 252-260, (2006)
[124] Munteanu, C.B.; Gonzalez-Diaz, H.; Magalhaes, A.L., Enzymes/non-enzymes classification model complexity based on composition, sequence, 3D and topological indices, J. theor. biol., 254, 476-482, (2008) · Zbl 1400.92405
[125] Murvai, J.; Vlahovicek, K.; Barta, E.; Pongor, S., The SBASE protein domain library, release 8.0: a collection of annotated protein sequence segments, Nucleic acids res., 29, 58-60, (2001)
[126] Murzin, A.G.; Brenner, S.E.; Hubbard, T.; Chothia, C., SCOP: a structural classification of protein database for the investigation of sequence and structures, J. mol. biol., 247, 536-540, (1995)
[127] Myers, D.; Palmer, G., Microcomputer tools for steady-state enzyme kinetics, Bioinformatics (original: computer applied bioscience), 1, 105-110, (1985)
[128] Nakashima, H.; Nishikawa, K., Discrimination of intracellular and extracellular proteins using amino acid composition and residue-pair frequencies, J. mol. biol, 238, 54-61, (1994)
[129] Nakashima, H.; Nishikawa, K.; Ooi, T., The folding type of a protein is relevant to the amino acid composition, J. biochem., 99, 152-162, (1986)
[130] Nanni, L.; Lumini, A., Genetic programming for creating Chou’s pseudo amino acid based features for submitochondria localization, Amino acids, 34, 653-660, (2008)
[131] Nanni, L.; Lumini, A., A further step toward an optimal ensemble of classifiers for peptide classification, a case study: HIV protease, Protein pept. lett., 16, 163-167, (2009)
[132] Niu, B.; Cai, Y.D.; Lu, W.C.; Zheng, G.Y.; Chou, K.C., Predicting protein structural class with adaboost learner, Protein pept. lett., 13, 489-492, (2006)
[133] Pan, Y.X.; Zhang, Z.Z.; Guo, Z.M.; Feng, G.Y.; Huang, Z.D.; He, L., Application of pseudo amino acid composition for predicting protein subcellular location: stochastic signal processing approach, J. protein chem., 22, 395-402, (2003)
[134] Pielak, R.M.; Chou, J.J., Solution NMR structure of the V27A drug resistant mutant of influenza A M2 channel, Biochem. biophys. res. commun., 401, 58-63, (2010)
[135] Pillai, K.C.S., Mahalanobis D2, (), 176-181, This reference also presents a brief biography of Mahalanobis who was a man of great originality and who made considerable contributions to statistics
[136] Qi, J.P.; Shao, S.H.; Li, D.D.; Zhou, G.P., A dynamic model for the p53 stress response networks under ion radiation, Amino acids, 33, 75-83, (2007)
[137] Qiu, J.D.; Huang, J.H.; Liang, R.P.; Lu, X.Q., Prediction of G-protein-coupled receptor classes based on the concept of Chou’s pseudo amino acid composition: an approach from discrete wavelet transform, Anal biochem., 390, 68-73, (2009)
[138] Qiu, J.D.; Huang, J.H.; Shi, S.P.; Liang, R.P., Using the concept of Chou’s pseudo amino acid composition to predict enzyme family classes: an approach with support vector machine based on discrete wavelet transform, Protein pept. lett., 17, 715-722, (2010)
[139] Reinhardt, A.; Hubbard, T., Using neural networks for prediction of the subcellular location of proteins, Nucleic acids res., 26, 2230-2236, (1998)
[140] Rezaei, M.A.; Abdolmaleki, P.; Karami, Z.; Asadabadi, E.B.; Sherafat, M.A.; Abrishami-Moghaddam, H.; Fadaie, M.; Forouzanfar, M., Prediction of membrane protein types by means of wavelet analysis and cascaded neural networks, J. theor. biol., 254, 817-820, (2008)
[141] Schaffer, A.A.; Aravind, L.; Madden, T.L.; Shavirin, S.; Spouge, J.L.; Wolf, Y.I.; Koonin, E.V.; Altschul, S.F., Improving the accuracy of PSI-BLAST protein database searches with composition-based statistics and other refinements, Nucleic acids res., 29, 2994-3005, (2001)
[142] Schnell, J.R.; Chou, J.J., Structure and mechanism of the M2 proton channel of influenza A virus, Nature, 451, 591-595, (2008)
[143] Shao, X.; Tian, Y.; Wu, L.; Wang, Y.; Jing, L.; Deng, N., Predicting DNA- and RNA-binding proteins from sequences with kernel methods, J. theor. biol., 258, 289-293, (2009) · Zbl 1402.92332
[144] Sharma, A.K.; Zhou, G.P.; Kupferman, J.; Surks, H.K.; Christensen, E.N.; Chou, J.J.; Mendelsohn, M.E.; Rigby, A.C., Probing the interaction between the coiled coil leucine zipper of cgmp-dependent protein kinase ialpha and the C terminus of the myosin binding subunit of the myosin light chain phosphatase, J. biol. chem., 283, 32860-32869, (2008)
[145] Shen, H.B.; Chou, K.C., Using optimized evidence-theoretic K-nearest neighbor classifier and pseudo amino acid composition to predict membrane protein types, Biochem. biophys. res. commun., 334, 288-292, (2005)
[146] Shen, H.B.; Chou, K.C., Predicting protein subnuclear location with optimized evidence-theoretic K-nearest classifier and pseudo amino acid composition, Biochem. biophys. res. commun., 337, 752-756, (2005)
[147] Shen, H.B.; Chou, K.C., Ensemble classifier for protein fold pattern recognition, Bioinformatics, 22, 1717-1722, (2006)
[148] Shen, H.B.; Chou, K.C., Ezypred: a top-down approach for predicting enzyme functional classes and subclasses, Biochem. biophys. res. commun., 364, 53-59, (2007)
[149] Shen, H.B.; Chou, K.C., Gpos-ploc: an ensemble classifier for predicting subcellular localization of Gram-positive bacterial proteins, Protein eng. des. sel., 20, 39-46, (2007)
[150] Shen, H.B.; Chou, K.C., Virus-ploc: a fusion classifier for predicting the subcellular localization of viral proteins within host and virus-infected cells, Biopolymers, 85, 233-240, (2007)
[151] Shen, H.B.; Chou, K.C., Hum-mploc: an ensemble classifier for large-scale human protein subcellular location prediction by incorporating samples with multiple sites, Biochem. biophys. res. commun., 355, 1006-1011, (2007)
[152] Shen, H.B.; Chou, K.C., Pseaac: a flexible web-server for generating various kinds of protein pseudo amino acid composition, Anal. biochem., 373, 386-388, (2008)
[153] Shen, H.B.; Chou, K.C., Predicting protein fold pattern with functional domain and sequential evolution information, J. theor. biol., 256, 441-446, (2009) · Zbl 1400.92413
[154] Shen, H.B.; Chou, K.C., Quatident: a web server for identifying protein quaternary structural attribute by fusing functional domain and sequential evolution information, J. proteome res., 8, 1577-1584, (2009)
[155] Shen, H.B.; Chou, K.C., Identification of proteases and their types, Anal. biochem., 385, 153-160, (2009)
[156] Shen, H.B.; Chou, K.C., A top-down approach to enhance the power of predicting human protein subcellular localization: hum-mploc 2.0., Anal biochem., 394, 269-274, (2009)
[157] Shen, H.B.; Chou, K.C., Gneg-mploc: a top-down strategy to enhance the quality of predicting subcellular localization of Gram-negative bacterial proteins, J. theor. biol., 264, 326-333, (2010) · Zbl 1406.92211
[158] Shen, H.B.; Yang, J.; Chou, K.C., Fuzzy KNN for predicting membrane protein types from pseudo amino acid composition, J. theor. biol., 240, 9-13, (2006)
[159] Shen, H.B.; Yang, J.; Chou, K.C., Euk-ploc: an ensemble classifier for large-scale eukaryotic protein subcellular location prediction, Amino acids, 33, 57-67, (2007)
[160] Shi, J.Y.; Zhang, S.W.; Pan, Q.; Zhou, G.P., Using pseudo amino acid composition to predict protein subcellular location: approached with amino acid composition distribution, Amino acids, 35, 321-327, (2008)
[161] Shi, J.Y.; Zhang, S.W.; Pan, Q.; Cheng, Y.-M.; Xie, J., Prediction of protein subcellular localization by support vector machines using multi-scale energy and pseudo amino acid composition, Amino acids, 33, 69-74, (2007)
[162] Shi, R.; Hu, X., Predicting enzyme subclasses by using support vector machine with composite vectors, Protein pept. lett., 17, 599-604, (2010)
[163] Small, I.; Peeters, N.; Legeai, F.; Lurin, C., Predotar: a tool for rapidly screening proteomes for N-terminal targeting sequences, Proteomics, 4, 1581-1590, (2004)
[164] Spiess, M., Heads or tails - what determines the orientation of proteins in the membrane, FEBS lett, 369, 76-79, (1995)
[165] Tatusov, R.L.; Fedorova, N.D.; Jackson, J.D.; Jacobs, A.R.; Kiryutin, B.; Koonin, E.V.; Krylov, D.M.; Mazumder, R.; Mekhedov, S.L.; Nikolskaya, A.N.; Rao, B.S.; Smirnov, S.; Sverdlov, A.V.; Vasudevan, S.; Wolf, Y.I.; Yin, J.J.; Natale, D.A., The COG database: an updated version includes eukaryotes, BMC bioinform., 4, 41, (2003)
[166] Vilar, S.; Gonzalez-Diaz, H.; Santana, L.; Uriarte, E., A network-QSAR model for prediction of genetic-component biomarkers in human colorectal cancer, J. theor. biol., 261, 449-458, (2009) · Zbl 1403.92088
[167] Wang, J.; Pielak, R.M.; McClintock, M.A.; Chou, J.J., Solution structure and functional analysis of the influenza B proton channel, Nat. struct. mol. biol., 16, 1267-1271, (2009)
[168] Wang, M.; Yang, J.; Liu, G.P.; Xu, Z.J.; Chou, K.C., Weighted-support vector machines for predicting membrane protein types based on pseudo amino acid composition, Protein eng. des. sel., 17, 509-516, (2004)
[169] Wang, S.Q.; Yang, J.; Chou, K.C., Using stacked generalization to predict membrane protein types based on pseudo amino acid composition, J. theor. biol., 242, 941-946, (2006)
[170] Wang, T.; Yang, J., Predicting subcellular localization of Gram-negative bacterial proteins by linear dimensionality reduction method, Protein pept. lett., 17, 32-37, (2010)
[171] Wang, T.; Xia, T.; Hu, X.M., Geometry preserving projections algorithm for predicting membrane protein types, J. theor. biol., 262, 208-213, (2010) · Zbl 1403.92225
[172] Wang, T.; Yang, J.; Shen, H.B.; Chou, K.C., Predicting membrane protein types by the LLDA algorithm, Protein pept. lett., 15, 915-921, (2008)
[173] Wang, Y.; Xue, Z.; Shen, G.; Xu., J., PRINTR: prediction of RNA binding sites in proteins using SVM and profiles, Amino acids, 35, 295-302, (2008)
[174] Wang, Y.C.; Wang, X.B.; Yang, Z.X.; Deng, N.Y., Prediction of enzyme subfamily class via pseudo amino acid composition by incorporating the conjoint triad feature, Protein pept. lett., 17, 1441-1449, (2010)
[175] Wootton, J.C.; Federhen, S., Statistics of local complexity in amino acid sequences and sequence databases, Comput. chem., 17, 149-163, (1993) · Zbl 0825.92102
[176] Wu, J.; Li, M.L.; Yu, L.Z.; Wang, C., An ensemble classifier of support vector machines used to predict protein structural classes by fusing auto covariance and pseudo-amino acid composition, Protein J., 29, 62-67, (2010)
[177] Xiao, X.; Lin, W.Z.; Chou, K.C., Using grey dynamic modeling and pseudo amino acid composition to predict protein structural classes, J. comput. chem., 29, 2018-2024, (2008)
[178] Xiao, X.; Wang, P.; Chou, K.C., Predicting protein structural classes with pseudo amino acid composition: an approach using geometric moments of cellular automaton image, J. theor. biol., 254, 691-696, (2008) · Zbl 1400.92416
[179] Xiao, X.; Wang, P.; Chou, K.C., Predicting protein quaternary structural attribute by hybridizing functional domain composition and pseudo amino acid composition, J. appl. crystallogr., 42, 169-173, (2009)
[180] Xiao, X.; Wang, P.; Chou, K.C., GPCR-CA: a cellular automaton image approach for predicting G-protein-coupled receptor functional classes, J. comput. chem., 30, 1414-1423, (2009)
[181] Xiao, X.; Wang, P.; Chou, K.C., Quat-2L: a web-server for predicting protein quaternary structural attributes, Mol. diversity, (2010)
[182] Xiao, X.; Wang, P.; Chou, K.C., GPCR-2L: predicting G protein-coupled receptors and their types by hybridizing two different modes of pseudo amino acid compositions, Mol. biosyst., (2010)
[183] Xiao, X.; Shao, S.H.; Huang, Z.D.; Chou, K.C., Using pseudo amino acid composition to predict protein structural classes: approached with complexity measure factor, J. comput. chem., 27, 478-482, (2006)
[184] Xiao, X.; Shao, S.H.; Ding, Y.S.; Huang, Z.D.; Chou, K.C., Using cellular automata images and pseudo amino acid composition to predict protein subcellular location, Amino acids, 30, 49-54, (2006)
[185] Xiao, X.; Shao, S.; Ding, Y.; Huang, Z.; Huang, Y.; Chou, K.C., Using complexity measure factor to predict protein subcellular location, Amino acids, 28, 57-61, (2005)
[186] Xiaohui, N.; Nana, L.; Feng, S.; Xuehai, H.; Jingbo, X.; Huijuan, X., Predicting protein solubility with a hybrid approach by pseudo amino acid composition, Protein pept. lett., 17, 1466-1472, (2010)
[187] Yang, J.; Jiang, X.F., A novel approach to predict protein – protein interactions related to Alzheimer’s disease based on complex network, Protein pept. lett., 17, 356-366, (2010)
[188] Yang, J.Y.; Peng, Z.L.; Yu, Z.G.; Zhang, R.J.; Anh, V.; Wang, D., Prediction of protein structural classes by recurrence quantification analysis based on chaos game representation, J. theor. biol., 257, 618-626, (2009) · Zbl 1400.92417
[189] Yang, X.Y.; Shi, X.H.; Meng, X.; Li, X.L.; Lin, K.; Qian, Z.L.; Feng, K.Y.; Kong, X.Y.; Cai, Y.D., Classification of transcription factors using protein primary structure, Protein pept. lett., 17, 899-908, (2010)
[190] Yu, L.; Guo, Y.; Li, Y.; Li, G.; Li, M.; Luo, J.; Xiong, W.; Qin, W., Secretp: identifying bacterial secreted proteins by fusing new features into Chou’s pseudo-amino acid composition, J. theor. biol., 267, 1-6, (2010) · Zbl 1410.92040
[191] Zeng, Y.H.; Guo, Y.Z.; Xiao, R.Q.; Yang, L.; Yu, L.Z.; Li, M.L., Using the augmented Chou’s pseudo amino acid composition for predicting protein submitochondria locations based on auto covariance approach, J. theor. biol., 259, 366-372, (2009) · Zbl 1402.92193
[192] Zhang, G.Y.; Fang, B.S., Predicting the cofactors of oxidoreductases based on amino acid composition distribution and Chou’s amphiphilic pseudo amino acid composition, J. theor. biol., 253, 310-315, (2008)
[193] Zhang, G.Y.; Li, H.C.; Gao, J.Q.; Fang, B.S., Predicting lipase types by improved Chou’s pseudo-amino acid composition, Protein pept. lett., 15, 1132-1137, (2008)
[194] Zhang, S.W.; Chen, W.; Yang, F.; Pan, Q., Using Chou’s pseudo amino acid composition to predict protein quaternary structure: a sequence-segmented pseaac approach, Amino acids, 35, 591-598, (2008)
[195] Zhang, S.W.; Pan, Q.; Zhang, H.C.; Shao, Z.C.; Shi, J.Y., Prediction protein homo-oligomer types by pseudo amino acid composition: approached with an improved feature extraction and naive Bayes feature fusion, Amino acids, 30, 461-468, (2006)
[196] Zhang, S.W.; Zhang, Y.L.; Yang, H.F.; Zhao, C.H.; Pan, Q., Using the concept of Chou’s pseudo amino acid composition to predict protein subcellular localization: an approach by incorporating evolutionary information and von Neumann entropies, Amino acids, 34, 565-572, (2008)
[197] Zhang, T.L.; Ding, Y.S., Using pseudo amino acid composition and binary-tree support vector machines to predict protein structural classes, Amino acids, 33, 623-629, (2007)
[198] Zhang, T.L.; Ding, Y.S.; Chou, K.C., Prediction protein structural classes with pseudo amino acid composition: approximate entropy and hydrophobicity pattern, J. theor. biol., 250, 186-193, (2008) · Zbl 1397.92551
[199] Zhao, X.M.; Chen, L.; Aihara, K., Protein function prediction with high-throughput data, Amino acids, 35, 517-530, (2008)
[200] Zhou, G.P., Biological functions of soliton and extra electron motion in DNA structure, Phys. scr., 40, 698-701, (1989)
[201] Zhou, G.P., An intriguing controversy over protein structural class prediction, J. protein chem., 17, 729-738, (1998)
[202] Zhou, G.P.; Deng, M.H., An extension of Chou’s graphical rules for deriving enzyme kinetic equations to system involving parallel reaction pathways, Biochem. J., 222, 169-176, (1984)
[203] Zhou, G.P.; Assa-Munt, N., Some insights into protein structural class prediction, Proteins: struct. funct. genet., 44, 57-59, (2001)
[204] Zhou, G.P.; Troy, F.A., Characterization by NMR and molecular modeling of the binding of polyisoprenols and polyisoprenyl recognition sequence peptides: 3D structure of the complexes reveals sites of specific interactions, Glycobiology, 13, 51-71, (2003)
[205] Zhou, G.P.; Doctor, K., Subcellular location prediction of apoptosis proteins, Proteins: struct. funct. genet., 50, 44-48, (2003)
[206] Zhou, G.P.; Troy, F.A., NMR studies on how the binding complex of polyisoprenol recognition sequence peptides and polyisoprenols can modulate membrane structure, Curr. protein pept. sci., 6, 399-411, (2005)
[207] Zhou, G.P.; Troy, F.A., NMR study of the preferred membrane orientation of polyisoprenols (dolichol) and the impact of their complex with polyisoprenyl recognition sequence peptides on membrane structure, Glycobiology, 15, 347-359, (2005)
[208] Zhou, G.P.; Cai, Y.D., Predicting protease types by hybridizing gene ontology and pseudo amino acid composition, PROTEINS: struct. funct. bioinform., 63, 681-684, (2006)
[209] Zhou, G.P.; Li, T.T.; Chou, K.C., The flexibility during the juxtaposition of reacting groups and the upper limits of enzyme reactions, Biophys. chem., 14, 277-281, (1981)
[210] Zhou, G.P.; Surks, H.K.; Schnell, J.R.; Chou, J.J.; Mendelsohn, M.E.; Rigby, A.C., The three-dimensional structure of the cgmp-dependent protein kinase I-α leucine zipper domain and its interaction with the myosin binding subunit, Blood, 104, 963a, (2004)
[211] Zhou, G.Q.; Zhong, W.Z., Diffusion-controlled reactions of enzymes. A comparison between Chou’s model and alberty – hammes – eigen’s model, Eur. J. biochem., 128, 383-387, (1982)
[212] Zhou, G.Z.; Wong, M.T.; Zhou, G.Q., Diffusion-controlled reactions of enzymes. an approximate analytic solution of Chou’s model, Biophys. chem., 18, 125-132, (1983)
[213] Zhou, X.B.; Chen, C.; Li, Z.C.; Zou, X.Y., Using Chou’s amphiphilic pseudo-amino acid composition and support vector machine for prediction of enzyme subfamily classes, J. theor. biol., 248, 546-551, (2007)
[214] Zhou, X.B.; Chen, C.; Li, Z.C.; Zou, X.Y., Improved prediction of subcellular location for apoptosis proteins by the dual-layer support vector machine, Amino acids, 35, 383-388, (2008)
[215] Zou, D.; He, Z.; He, J.; Xia, Y., Supersecondary structure prediction using Chou’s pseudo amino acid composition, J. comput. chem., 32, 271-278, (2011)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.