×

A note on the simultaneous Waring rank of monomials. (English) Zbl 1394.05141

Summary: In this paper, we study the complex simultaneous Waring rank for collections of monomials. For general collections, we provide a lower bound, whereas for special collections we provide a formula for the simultaneous Waring rank. Our approach is algebraic and combinatorial. We give an application to ranks of binomials and maximal simultaneous ranks. Moreover, we include an appendix of scripts written in the algebra software Macaulay2 to experiment with simultaneous ranks.

MSC:

05E15 Combinatorial aspects of groups and algebras (MSC2010)
05E40 Combinatorial aspects of commutative algebra

Software:

Macaulay2

References:

[1] A. Anandkumar, D. Hsu, R. Ge, S. M. Kakade and M. Telgarsky, Tensor decompositions for learning latent variable models, J. Mach. Learn. Res. 15 (2014), 2773–2832. · Zbl 1319.62109
[2] E. Angelini, F. Galuppi, M. Mella and G. Ottaviani, On the number of Waring decompositions for a generic polynomial vector, J. Pure Appl. Algebra 222 (2018), 680–965. · Zbl 1390.14158 · doi:10.1016/j.jpaa.2017.05.016
[3] E. Ballico, A. Bernardi and M. V. Catalisano, Higher secant varieties of \(\mathbb{P}^{n}× \mathbb{P}^{1}\) embedded in bidegree \((a,b)\), Comm. Algebra 40 (2012), no. 10, 3822–3840. · Zbl 1262.14066 · doi:10.1080/00927872.2011.595748
[4] K. Baur and J. Draisma, Secant dimensions of low-dimensional homogeneous varieties, Adv. Geom. 10 (2015), no. 1, 1–29. · Zbl 1186.14054 · doi:10.1515/ADVGEOM.2010.001
[5] G. Blekherman and Z. Teitler, On maximum, typical and generic ranks, Math. Ann. 362 (2015), no. 3–4, 1021–1031. · Zbl 1326.15034 · doi:10.1007/s00208-014-1150-3
[6] J. Buczyński, K. Han, M. Mella and Z. Teitler, On the locus of points of high rank, Eur. J. Math. 4 (2018), 113–136. · Zbl 1401.14219 · doi:10.1007/s40879-017-0172-2
[7] J. Buczyński and Z. Teitler, Some examples of forms of high rank, Collect. Math. 67 (2016), no. 3, 431–441. · Zbl 1346.13055 · doi:10.1007/s13348-015-0152-0
[8] E. Carlini, M. V. Catalisano and A. V. Geramita, The solution to Waring’s problem for monomials and the sum of coprime monomials, J. Algebra 370 (2012), 5–14. · Zbl 1284.13008 · doi:10.1016/j.jalgebra.2012.07.028
[9] E. Carlini, M. V. Catalisano and A. Oneto, Waring loci and Strassen conjecture, Adv. Math. 314 (2017), 630–662. · Zbl 1373.14049 · doi:10.1016/j.aim.2017.05.008
[10] E. Carlini, L. Chiantini, M. V. Catalisano, A. V. Geramita and J. Woo, Symmetric tensors: Rank, strassen’s conjecture and \(e\)-computability, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) XVIII (2018), 363–390. · Zbl 1391.14114
[11] E. Carlini and J. Chipalkatti, On Waring’s problem for several algebraic forms, Comment. Math. Helv. 78 (2003), no. 3, 494–517. · Zbl 1052.14064 · doi:10.1007/s00014-003-0769-6
[12] C. Dionisi and C. Fontanari, Grassmann defectivity à la Terracini, Matematiche (Catania) 56 (2001), 245–255. · Zbl 1177.14093
[13] D. R. Grayson and M. E. Stillman, Macaulay2—A software system for research in algebraic geometry; available at http://www.math.uiuc.edu/Macaulay2/.
[14] A. Iarrobino and V. Kanev, Power sums, Gorenstein algebras, and determinantal loci, vol. 1721, Springer-Verlag, Berlin, 1999. · Zbl 0942.14026 · doi:10.1007/BFb0093426
[15] R. P. Stanley, Enumerative Combinatorics, Cambridge Studies in Advanced Mathematics, vol. 49, Cambridge Univ. Press, Cambridge, 1997. · Zbl 0889.05001 · doi:10.1017/CBO9780511805967
[16] V. Strassen, Vermeidung von Divisionen, J. Reine Angew. Math. 264 (1973), 184–202. · Zbl 0294.65021
[17] Z. Teitler, Sufficient conditions for Strassen’s additivity conjecture, Illinois J. Math. 59 (2015), no. 4, 1071–1085. · Zbl 1359.14049
[18] A. Terracini, Sulla rappresentazione delle coppie di forme ternarie mediante somme di potenze di forme lineari, Ann. Mat. Pura Appl. XXIV (1915), 91–100. · JFM 45.0239.01 · doi:10.1007/BF02419670
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.