Zhou, Xiangyu; Zhu, Langfeng An optimal \(L^2\) extension theorem on weakly pseudoconvex Kähler manifolds. (English) Zbl 1426.53082 J. Differ. Geom. 110, No. 1, 135-186 (2018). Summary: In this paper, we prove an \(L^2\) extension theorem for holomorphic sections of holomorphic line bundles equipped with singular metrics on weakly pseudoconvex Kähler manifolds. Furthermore, in our \(L^2\) estimate, optimal constants corresponding to variable denominators are obtained. As applications, we prove an \(L^q\) extension theorem with an optimal estimate on weakly pseudoconvex Kähler manifolds and the log-plurisubharmonicity of the fiberwise Bergman kernel in the Kähler case. Cited in 2 ReviewsCited in 14 Documents MSC: 53C55 Global differential geometry of Hermitian and Kählerian manifolds 32Q15 Kähler manifolds 32L05 Holomorphic bundles and generalizations 32T27 Geometric and analytic invariants on weakly pseudoconvex boundaries Keywords:optimal \(L^2\) extension; singular Hermitian metric; plurisubharmonic function; weakly pseudoconvex manifold; Kähler manifold PDF BibTeX XML Cite \textit{X. Zhou} and \textit{L. Zhu}, J. Differ. Geom. 110, No. 1, 135--186 (2018; Zbl 1426.53082) Full Text: DOI Euclid OpenURL