×

Role of darrieus-Landau instability in propagation of expanding turbulent flames. (English) Zbl 1415.76749

Summary: In this paper we study the essential role of Darrieus-Landau (DL), hydrodynamic, cellular flame-front instability in the propagation of expanding turbulent flames. First, we analyse and compare the characteristic time scales of flame wrinkling under the simultaneous actions of DL instability and turbulent eddies, based on which three turbulent flame propagation regimes are identified, namely, instability dominated, instability-turbulence interaction and turbulence dominated regimes. We then perform experiments over an extensive range of conditions, including high pressures, to promote and manipulate the DL instability. The results clearly demonstrate the increase in the acceleration exponent of the turbulent flame propagation as these three regimes are traversed from the weakest to the strongest, which are respectively similar to those of the laminar cellularly unstable flame and the turbulent flame without flame-front instability, and thus validating the scaling analysis. Finally, based on the scaling analysis and the experimental results, we propose a modification of the conventional turbulent flame regime diagram to account for the effects of DL instability.

MSC:

76V05 Reaction effects in flows
76E30 Nonlinear effects in hydrodynamic stability
76F25 Turbulent transport, mixing
80A25 Combustion

Software:

USC-Mech II; PREMIX
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abdel-Gayed, R. G.; Bradley, D.; Lawes, M., Turbulent burning velocities: a general correlation in terms of straining rates, Proc. R. Soc. Lond. A, 414, 1847, 389-413, (1987) · doi:10.1098/rspa.1987.0150
[2] Addabbo, R.; Bechtold, J. K.; Matalon, M., Wrinkling of spherically expanding flames, Proc. Combust. Inst., 29, 2, 1527-1535, (2002) · doi:10.1016/S1540-7489(02)80187-0
[3] Akkerman, V.; Bychkov, V., Velocity of weakly turbulent flames of finite thickness, Combust. Theor. Model., 9, 2, 323-351, (2005) · Zbl 1095.80002 · doi:10.1080/13647830500098399
[4] Akkerman, V.; Bychkov, V.; Eriksson, L.-E., Numerical study of turbulent flame velocity, Combust. Flame, 151, 3, 452-471, (2007) · doi:10.1016/j.combustflame.2007.07.002
[5] Bauwens, C. R.; Bergthorson, J. M.; Dorofeev, S. B., On the interaction of the Darrieus-Landau instability with weak initial turbulence, Proc. Combust. Inst., 36, 2, 2815-2822, (2017) · doi:10.1016/j.proci.2016.07.030
[6] Bell, J. B.; Day, M. S.; Shepherd, I. G.; Johnson, M. R.; Cheng, R. K.; Grcar, J. F.; Beckner, V. E.; Lijewski, M. J., Numerical simulation of a laboratory-scale turbulent v-flame, Proc. Natl Acad. Sci. USA, 102, 29, 10006-10011, (2005) · doi:10.1073/pnas.0504140102
[7] Boughanem, H.; Trouvé, A., The domain of influence of flame instabilities in turbulent premixed combustion, Symp. (Int) Combust., 27, 1, 971-978, (1998) · doi:10.1016/S0082-0784(98)80496-7
[8] Bradley, D., How fast can we burn?, Proc. Combust. Inst., 24, 1, 247-262, (1992) · doi:10.1016/S0082-0784(06)80034-2
[9] Bradley, D.; Lawes, M.; Liu, K.; Mansour, M. S., Measurements and correlations of turbulent burning velocities over wide ranges of fuels and elevated pressures, Proc. Combust. Inst., 34, 1, 1519-1526, (2013) · doi:10.1016/j.proci.2012.06.060
[10] Bray, K. N. C., Studies of the turbulent burning velocity, Proc. R. Soc. Lond. A, 431, 1882, 315-335, (1990) · doi:10.1098/rspa.1990.0133
[11] Burke, M. P.; Chen, Z.; Ju, Y.; Dryer, F. L., Effect of cylindrical confinement on the determination of laminar flame speeds using outwardly propagating flames, Combust. Flame, 156, 4, 771-779, (2009) · doi:10.1016/j.combustflame.2009.01.013
[12] Bychkov, V., Importance of the darrieus-landau instability for strongly corrugated turbulent flames, Phys. Rev. E, 68, 6, (2003)
[13] Chaudhuri, S.; Akkerman, V.; Law, C. K., Spectral formulation of turbulent flame speed with consideration of hydrodynamic instability, Phys. Rev. E, 84, 2, (2011)
[14] Chaudhuri, S.; Saha, A.; Law, C. K., On flame – turbulence interaction in constant-pressure expanding flames, Proc. Combust. Inst., 35, 2, 1331-1339, (2015) · doi:10.1016/j.proci.2014.07.038
[15] Chaudhuri, S.; Wu, F.; Law, C. K., Scaling of turbulent flame speed for expanding flames with Markstein diffusion considerations, Phys. Rev. E, 88, 3, (2013)
[16] Chaudhuri, S.; Wu, F.; Zhu, D.; Law, C. K., Flame speed and self-similar propagation of expanding turbulent premixed flames, Phys. Rev. Lett., 108, 4, (2012)
[17] Chen, J. H.; Im, H. G., Correlation of flame speed with stretch in turbulent premixed methane/air flames, Symp. (Int) Combust., 27, 1, 819-826, (1998) · doi:10.1016/S0082-0784(98)80477-3
[18] Creta, F.; Lamioni, R.; Lapenna, P. E.; Troiani, G., Interplay of Darrieus-Landau instability and weak turbulence in premixed flame propagation, Phys. Rev. E, 94, (2016)
[19] Creta, F.; Matalon, M., Propagation of wrinkled turbulent flames in the context of hydrodynamic theory, J. Fluid Mech., 680, 225-264, (2011) · Zbl 1241.76437 · doi:10.1017/jfm.2011.157
[20] Darrieus, G., Propagation dun front de flamme, La Technique Moderne, 30, 18, (1938)
[21] Driscoll, J. F., Turbulent premixed combustion: flamelet structure and its effect on turbulent burning velocities, Prog. Energy Combust. Sci., 34, 1, 91-134, (2008) · doi:10.1016/j.pecs.2007.04.002
[22] Filatyev, S. A.; Driscoll, J. F.; Carter, C. D.; Donbar, J. M., Measured properties of turbulent premixed flames for model assessment, including burning velocities, stretch rates, and surface densities, Combust. Flame, 141, 1, 1-21, (2005) · doi:10.1016/j.combustflame.2004.07.010
[23] Fogla, N.; Creta, F.; Matalon, M., Influence of the darrieus-landau instability on the propagation of planar turbulent flames, Proc. Combust. Inst., 34, 1, 1509-1517, (2013) · Zbl 1219.80118 · doi:10.1016/j.proci.2012.07.039
[24] Fogla, N.; Creta, F.; Matalon, M., Effect of folds and pockets on the topology and propagation of premixed turbulent flames, Combust. Flame, 162, 7, 2758-2777, (2015) · doi:10.1016/j.combustflame.2015.04.012
[25] Fogla, N.; Creta, F.; Matalon, M., The turbulent flame speed for low-to-moderate turbulence intensities: hydrodynamic theory versus experiments, Combust. Flame, 175, 155-169, (2017) · doi:10.1016/j.combustflame.2016.06.023
[26] Jiang, L. J.; Shy, S. S.; Li, W. Y.; Huang, H. M.; Nguyen, M. T., High-temperature, high-pressure burning velocities of expanding turbulent premixed flames and their comparison with Bunsen-type flames, Combust. Flame, 172, 173-182, (2016) · doi:10.1016/j.combustflame.2016.07.021
[27] Kee, R. J., Gracer, J. F., Miller, J. A. & Meeks, E.1985 Premix: a fortran program for modeling steady laminar one-dimensional premixed flames. Tech. Rep. Sandia National Laboratories, Report SAND85-8249.
[28] Kerstein, A. R.; Ashurst, W. T.; Williams, F. A., Field equation for interface propagation in an unsteady homogeneous flow field, Phys. Rev. A, 37, 2728-2731, (1988) · doi:10.1103/PhysRevA.37.2728
[29] Kido, H.; Nakahara, M.; Nakashima, K.; Hashimoto, J., Influence of local flame displacement velocity on turbulent burning velocity, Proc. Combust. Inst., 29, 2, 1855-1861, (2002) · doi:10.1016/S1540-7489(02)80225-5
[30] Kobayashi, H.; Kawabata, Y.; Maruta, K., Experimental study on general correlation of turbulent burning velocity at high pressure, Symp. (Int) Combust., 27, 1, 941-948, (1998) · doi:10.1016/S0082-0784(98)80492-X
[31] Kobayashi, H.; Seyama, K.; Hagiwara, H.; Ogami, Y., Burning velocity correlation of methane/air turbulent premixed flames at high pressure and high temperature, Proc. Combust. Inst., 30, 1, 827-834, (2005) · doi:10.1016/j.proci.2004.08.098
[32] Landau, L. D., On the theory of slow combustion, Acta Physicochim. USSR, 19, 1, 77-85, (1944)
[33] Lipatnikov, A. N.; Chomiak, J., Molecular transport effects on turbulent flame propagation and structure, Prog. Energy Combust. Sci., 31, 1, 1-73, (2005) · Zbl 1187.80032 · doi:10.1016/j.pecs.2004.07.001
[34] Matalon, M., Intrinsic flame instabilities in premixed and nonpremixed combustion, Annu. Rev. Fluid Mech., 39, 163-191, (2007) · Zbl 1296.76057 · doi:10.1146/annurev.fluid.38.050304.092153
[35] Peters, N., The turbulent burning velocity for large-scale and small-scale turbulence, J. Fluid Mech., 384, 107-132, (1999) · Zbl 0948.76087 · doi:10.1017/S0022112098004212
[36] Peters, N., Turbulent Combustion, (2000), Cambridge University Press · Zbl 0955.76002 · doi:10.1017/CBO9780511612701
[37] Pope, S. B., Pdf methods for turbulent reactive flows, Prog. Energy Combust. Sci., 11, 2, 119-192, (1985) · doi:10.1016/0360-1285(85)90002-4
[38] Pope, S. B.2000Turbulent Flows. chap. 6, Cambridge University Press. doi:10.1017/CBO9780511840531 · Zbl 0966.76002
[39] Savarianandam, V. R.; Lawn, C. J., Burning velocity of premixed turbulent flames in the weakly wrinkled regime, Combust. Flame, 146, 1, 1-18, (2006) · doi:10.1016/j.combustflame.2006.05.002
[40] Searby, G.; Clavin, P., Weakly turbulent, wrinkled flames in premixed gases, Combust. Sci. Technol., 46, 3-6, 167-193, (1986) · doi:10.1080/00102208608959799
[41] Sivashinsky, G. I., Cascade-renormalization theory of turbulent flame speed, Combust. Sci. Technol., 62, 1-3, 77-96, (1988) · doi:10.1080/00102208808924003
[42] Troiani, G.; Creta, F.; Matalon, M., Experimental investigation of Darrieus-Landau instability effects on turbulent premixed flames, Proc. Combust. Inst., 35, 2, 1451-1459, (2015) · doi:10.1016/j.proci.2014.07.060
[43] Venkateswaran, P.; Marshall, A. D.; Seitzman, J. M.; Lieuwen, T. C., Turbulent consumption speeds of high hydrogen content fuels from 1-20 atm, Trans. ASME J. Engng Gas Turbines Power, 136, 1, (2014)
[44] Wang, H., You, X., Joshi, A., Davis, S., Laskin, A., Egolfopoulos, F. & Law, C. K.2007 USC mech version II. High-temperature combustion reaction model of H2/CO/C1-C4 compounds. Available at:http://ignis.usc.edu/Mechanisms/USC-Mech
[45] Wu, F.; Saha, A.; Chaudhuri, S.; Law, C. K., Propagation speeds of expanding turbulent flames of c 4 to c 8 n-alkanes at elevated pressures: experimental determination, fuel similarity, and stretch-affected local extinction, Proc. Combust. Inst., 35, 2, 1501-1508, (2015) · doi:10.1016/j.proci.2014.07.070
[46] Yang, S.; Saha, A.; Wu, F.; Law, C. K., Morphology and self-acceleration of expanding laminar flames with flame-front cellular instabilities, Combust. Flame, 171, 112-118, (2016) · doi:10.1016/j.combustflame.2016.05.017
[47] Yang, S.; Yang, X.; Wu, F.; Ju, Y.; Law, C. K., Laminar flame speeds and kinetic modeling of H2/O2/diluent mixtures at sub-atmospheric and elevated pressures, Proc. Combust. Inst., 36, 1, 491-498, (2017) · doi:10.1016/j.proci.2016.06.122
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.