zbMATH — the first resource for mathematics

Axions from strings: the attractive solution. (English) Zbl 1395.85012
Summary: We study the system of axion strings that forms in the early Universe if the Peccei-Quinn symmetry is restored after inflation. Using numerical simulations, we establish the existence of an asymptotic solution to which the system is attracted independently of the initial conditions. We study in detail the properties of this solution, including the average number of strings per Hubble patch, the distribution of loops and long strings, the way that different types of radiation are emitted, and the shape of the spectrum of axions produced. We find clear evidence of logarithmic violations of the scaling properties of the attractor solution. We also find that, while most of the axions are emitted with momenta of order Hubble, most of the axion energy density is contained in axions with energy of order the string core scale, at least in the parameter range available in the simulation. While such a spectrum would lead to a negligible number density of relic axions from strings when extrapolated to the physical parameter region, we show that the presence of small logarithmic corrections to the spectrum shape could completely alter such a conclusion. A detailed understanding of the evolution of the axion spectrum is therefore crucial for a reliable estimate of the relic axion abundance from strings.

85A40 Cosmology
83F05 Cosmology
83E30 String and superstring theories in gravitational theory
Full Text: DOI arXiv
[1] Peccei, RD; Quinn, HR, CP conservation in the presence of instantons, Phys. Rev. Lett., 38, 1440, (1977)
[2] Wilczek, F., Problem of strong p and t invariance in the presence of instantons, Phys. Rev. Lett., 40, 279, (1978)
[3] Weinberg, S., A new light boson?, Phys. Rev. Lett., 40, 223, (1978)
[4] Kim, JE, Weak interaction singlet and strong CP invariance, Phys. Rev. Lett., 43, 103, (1979)
[5] Shifman, MA; Vainshtein, AI; Zakharov, VI, Can confinement ensure natural CP invariance of strong interactions?, Nucl. Phys., B 166, 493, (1980)
[6] A.R. Zhitnitsky, On possible suppression of the axion hadron interactions, Sov. J. Nucl. Phys.31 (1980) 260 [Yad. Fiz.31 (1980) 497] [INSPIRE].
[7] Dine, M.; Fischler, W.; Srednicki, M., A simple solution to the strong CP problem with a harmless axion, Phys. Lett., B 104, 199, (1981)
[8] Preskill, J.; Wise, MB; Wilczek, F., Cosmology of the invisible axion, Phys. Lett., B 120, 127, (1983)
[9] Abbott, LF; Sikivie, P., A cosmological bound on the invisible axion, Phys. Lett., B 120, 133, (1983)
[10] Dine, M.; Fischler, W., The not so harmless axion, Phys. Lett., B 120, 137, (1983)
[11] Graham, PW; Irastorza, IG; Lamoreaux, SK; Lindner, A.; Bibber, KA, Experimental searches for the axion and axion-like particles, Ann. Rev. Nucl. Part. Sci., 65, 485, (2015)
[12] Irastorza, IG; Redondo, J., New experimental approaches in the search for axion-like particles, Prog. Part. Nucl. Phys., 102, 89, (2018)
[13] P. Sikivie, Axion cosmology, Lect. Notes Phys.741 (2008) 19 [astro-ph/0610440] [INSPIRE].
[14] Marsh, DJE, Axion cosmology, Phys. Rept., 643, 1, (2016)
[15] Lyth, DH, A limit on the inflationary energy density from axion isocurvature fluctuations, Phys. Lett., B 236, 408, (1990)
[16] Turner, MS; Wilczek, F., Inflationary axion cosmology, Phys. Rev. Lett., 66, 5, (1991)
[17] Linde, AD, Axions in inflationary cosmology, Phys. Lett., B 259, 38, (1991)
[18] Vilenkin, A.; Everett, AE, Cosmic strings and domain walls in models with Goldstone and pseudo-Goldstone bosons, Phys. Rev. Lett., 48, 1867, (1982)
[19] Sikivie, P., Of axions, domain walls and the early universe, Phys. Rev. Lett., 48, 1156, (1982)
[20] Vilenkin, A., Cosmic strings and domain walls, Phys. Rept., 121, 263, (1985) · Zbl 0966.83541
[21] Davis, RL, Goldstone bosons in string models of galaxy formation, Phys. Rev., D 32, 3172, (1985)
[22] Davis, RL, Cosmic axions from cosmic strings, Phys. Lett., B 180, 225, (1986)
[23] Kibble, TWB, Topology of cosmic domains and strings, J. Phys., A 9, 1387, (1976) · Zbl 0333.57005
[24] Kibble, TWB, Some implications of a cosmological phase transition, Phys. Rept., 67, 183, (1980)
[25] Vilenkin, A., Cosmic strings, Phys. Rev., D 24, 2082, (1981)
[26] Albrecht, A.; Turok, N., Evolution of cosmic strings, Phys. Rev. Lett., 54, 1868, (1985)
[27] Bennett, DP; Bouchet, FR, Evidence for a scaling solution in cosmic string evolution, Phys. Rev. Lett., 60, 257, (1988)
[28] Allen, B.; Shellard, EPS, Cosmic string evolution: a numerical simulation, Phys. Rev. Lett., 64, 119, (1990)
[29] G.R. Vincent, M. Hindmarsh and M. Sakellariadou, Scaling and small scale structure in cosmic string networks, Phys. Rev.D 56 (1997) 637 [astro-ph/9612135] [INSPIRE]. · Zbl 0333.57005
[30] C.J. A.P. Martins and E.P.S. Shellard, Extending the velocity dependent one scale string evolution model, Phys. Rev.D 65 (2002) 043514 [hep-ph/0003298] [INSPIRE].
[31] A. Vilenkin and E.P.S. Shellard, Cosmic strings and other topological defects, Cambridge University Press, Cambridge, U.K., (2000) [INSPIRE]. · Zbl 0978.83052
[32] Vilenkin, A.; Vachaspati, T., Radiation of Goldstone bosons from cosmic strings, Phys. Rev., D 35, 1138, (1987) · Zbl 0966.83544
[33] Davis, RL; Shellard, EPS, Do axions need inflation?, Nucl. Phys., B 324, 167, (1989)
[34] Dabholkar, A.; Quashnock, JM, Pinning down the axion, Nucl. Phys., B 333, 815, (1990)
[35] R.A. Battye and E.P.S. Shellard, Global string radiation, Nucl. Phys.B 423 (1994) 260 [astro-ph/9311017] [INSPIRE].
[36] R.A. Battye and E.P.S. Shellard, Axion string constraints, Phys. Rev. Lett.73 (1994) 2954 [Erratum ibid.76 (1996) 2203] [astro-ph/9403018] [INSPIRE].
[37] M. Yamaguchi, M. Kawasaki and J. Yokoyama, Evolution of axionic strings and spectrum of axions radiated from them, Phys. Rev. Lett.82 (1999) 4578 [hep-ph/9811311] [INSPIRE].
[38] M. Yamaguchi, Scaling property of the global string in the radiation dominated universe, Phys. Rev.D 60 (1999) 103511 [hep-ph/9907506] [INSPIRE].
[39] C. Hagmann, S. Chang and P. Sikivie, Axion radiation from strings, Phys. Rev.D 63 (2001) 125018 [hep-ph/0012361] [INSPIRE].
[40] Georgi, H.; Wise, MB, Hiding the invisible axion, Phys. Lett., B 116, 123, (1982)
[41] S. Chang, C. Hagmann and P. Sikivie, Studies of the motion and decay of axion walls bounded by strings, Phys. Rev.D 59 (1999) 023505 [hep-ph/9807374] [INSPIRE].
[42] Ya. B. Zeldovich, I. Yu. Kobzarev and L.B. Okun, Cosmological consequences of the spontaneous breakdown of discrete symmetry, Zh. Eksp. Teor. Fiz.67 (1974) 3 [Sov. Phys. JETP40 (1974) 1] [INSPIRE].
[43] Gelmini, GB; Gleiser, M.; Kolb, EW, Cosmology of biased discrete symmetry breaking, Phys. Rev., D 39, 1558, (1989)
[44] S.E. Larsson, S. Sarkar and P.L. White, Evading the cosmological domain wall problem, Phys. Rev.D 55 (1997) 5129 [hep-ph/9608319] [INSPIRE].
[45] Hiramatsu, T.; Kawasaki, M.; Saikawa, K.; Sekiguchi, T., Axion cosmology with long-lived domain walls, JCAP, 01, 001, (2013)
[46] Luzio, L.; Nardi, E.; Ubaldi, L., Accidental peccei-quinn symmetry protected to arbitrary order, Phys. Rev. Lett., 119, (2017)
[47] Hagmann, C.; Sikivie, P., Computer simulations of the motion and decay of global strings, Nucl. Phys., B 363, 247, (1991)
[48] Visinelli, L.; Gondolo, P., Axion cold dark matter in view of BICEP2 results, Phys. Rev. Lett., 113, (2014)
[49] Harari, D.; Sikivie, P., On the evolution of global strings in the early universe, Phys. Lett., B 195, 361, (1987)
[50] Hiramatsu, T.; Kawasaki, M.; Sekiguchi, T.; Yamaguchi, M.; Yokoyama, J., Improved estimation of radiated axions from cosmological axionic strings, Phys. Rev., D 83, 123531, (2011)
[51] Klaer, VB; Moore, GD, How to simulate global cosmic strings with large string tension, JCAP, 10, 043, (2017)
[52] M. Yamaguchi, J. Yokoyama and M. Kawasaki, Numerical analysis of formation and evolution of global strings in (2 + 1)-dimensions, Prog. Theor. Phys.100 (1998) 535 [hep-ph/9808326] [INSPIRE].
[53] Fleury, L.; Moore, GD, Axion dark matter: strings and their cores, JCAP, 01, 004, (2016)
[54] Hindmarsh, M.; Lizarraga, J.; Urrestilla, J.; Daverio, D.; Kunz, M., Scaling from gauge and scalar radiation in abelian Higgs string networks, Phys. Rev., D 96, (2017)
[55] Hindmarsh, M.; Stuckey, S.; Bevis, N., Abelian Higgs cosmic strings: small scale structure and loops, Phys. Rev., D 79, 123504, (2009)
[56] C. Hagmann, S. Chang and P. Sikivie, Axions from string decay, Nucl. Phys. Proc. Suppl.72 (1999) 81 [hep-ph/9807428] [INSPIRE].
[57] Klaer, VB; Moore, GD, The dark-matter axion mass, JCAP, 11, 049, (2017)
[58] Clough, K.; Figueras, P.; Finkel, H.; Kunesch, M.; Lim, EA; Tunyasuvunakool, S., Grchombo: numerical relativity with adaptive mesh refinement, Class. Quant. Grav., 32, 245011, (2015) · Zbl 1331.83003
[59] Fleury, LM; Moore, GD, Axion string dynamics I: 2 + 1D, JCAP, 05, 005, (2016)
[60] R.J. LeVeque, Finite difference methods for ordinary and partial differential equations, Cambridge University Press, Cambridge, U.K., (2007). · Zbl 1127.65080
[61] WMAP collaboration, G. Hinshaw et al., First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: the angular power spectrum, Astrophys. J. Suppl.148 (2003) 135 [astro-ph/0302217] [INSPIRE].
[62] Davis, RL; Shellard, EPS, Antisymmetric tensors and spontaneous symmetry breaking, Phys. Lett., B 214, 219, (1988)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.