NL MIND-BEST: a web server for ligands and proteins discovery – theoretic-experimental study of proteins of Giardia lamblia and new compounds active against Plasmodium falciparum. (English) Zbl 1405.92216

Summary: There are many protein ligands and/or drugs described with very different affinity to a large number of target proteins or receptors. In this work, we selected ligands or drug-target pairs (DTPs/nDTPs) of drugs with high affinity/non-affinity for different targets. quantitative structure-activity relationships (QSAR) models become a very useful tool in this context to substantially reduce time and resources consuming experiments. Unfortunately most QSAR models predict activity against only one protein target and/or have not been implemented in the form of public web server freely accessible online to the scientific community. To solve this problem, we developed here a multi-target QSAR (mt-QSAR) classifier using the MARCH-INSIDE technique to calculate structural parameters of drug and target plus one artificial neuronal network (ANN) to seek the model. The best ANN model found is a multi-layer perceptron (MLP) with profile MLP 20:20-15-1:1. This MLP classifies correctly 611 out of 678 DTPs (sensitivity = 90.12%) and 3083 out of 3408 nDTPs (specificity = 90.46%), corresponding to training accuracy = 90.41%. The validation of the model was carried out by means of external predicting series. The model classifies correctly 310 out of 338 DTPs (sensitivity = 91.72%) and 1527 out of 1674 nDTP (specificity = 91.22%) in validation series, corresponding to total accuracy = 91.30% for validation series (predictability). This model favorably compares with other ANN models developed in this work and machine learning classifiers published before to address the same problem in different aspects. We implemented the present model at web portal Bio-AIMS in the form of an online server called: nonlinear MARCH-INSIDE nested drug-bank exploration & screening tool (NL MIND-BEST), which is located at URL: http://miaja.tic.udc.es/Bio-AIMS/NL-MIND-BEST.php. This online tool is based on PHP/HTML/Python and MARCH-INSIDE routines. Finally we illustrated two practical uses of this server with two different experiments. In experiment 1, we report by first time quantum QSAR study, synthesis, characterization, and experimental assay of antiplasmodial and cytotoxic activities of oxoisoaporphine alkaloids derivatives as well as NL MIND-BEST prediction of potential target proteins. In experiment 2, we report sampling, parasite culture, sample preparation, 2-DE, MALDI-TOF, and -TOF/TOF MS, MASCOT search, MM/MD 3D structure modeling, and NL MIND-BEST prediction for different peptides a new protein of the found in the proteome of the human parasite Giardia lamblia, which is promising for anti-parasite drug-targets discovery.


92D20 Protein sequences, DNA sequences
92C40 Biochemistry, molecular biology
68T05 Learning and adaptive systems in artificial intelligence
92-08 Computational methods for problems pertaining to biology
Full Text: DOI


[1] Aguero-Chapin, G.; Antunes, A.; Ubeira, F.M.; Chou, K.C.; Gonzalez-Diaz, H., Comparative study of topological indices of macro/supramolecular RNA complex networks, J. chem. inf. model., 48, 2265-2277, (2008)
[2] Aguero-Chapin, G.; Varona-Santos, J.; de la Riva, G.A.; Antunes, A.; Gonzalez-Villa, T.; Uriarte, E.; Gonzalez-Diaz, H., Alignment-free prediction of polygalacturonases with pseudofolding topological indices: experimental isolation from coffea arabica and prediction of a new sequence, J. proteome res., 8, 2122-2128, (2009)
[3] Agüero-Chapin, G.; Gonzalez-Diaz, H.; Molina, R.; Varona-Santos, J.; Uriarte, E.; Gonzalez-Diaz, Y., Novel 2D maps and coupling numbers for protein sequences. the first QSAR study of polygalacturonases; isolation and prediction of a novel sequence from psidium guajava L, FEBS lett., 580, 723-730, (2006)
[4] Altschul, S.F.; Madden, T.L.; Schaffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; J., L.D., Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucleic acids res., 25, 389-402, (1997)
[5] Apte, A.A.; Cain, J.W.; Bonchev, D.G.; Fong, S.S., Cellular automata simulation of topological effects on the dynamics of feed-forward motifs, J. biol. eng., 2, 2, (2008)
[6] Arakaki, T.; Le Trong, I.; Phizicky, E.; Quartley, E.; DeTitta, G.; Luft, J.; Lauricella, A.; Anderson, L.; Kalyuzhniy, O.; Worthey, E.; Myler, P.J.; Kim, D.; Baker, D.; Hol, W.G.; Merritt, E.A., Structure of lmaj006129AAA, a hypothetical protein from leishmania major, Acta crystallogr. sect. F struct. biol. cryst. commun., 62, 175-179, (2006)
[7] Barabasi, A.L., Sociology. network theory-the emergence of the creative enterprise, Science, 308, 639-641, (2005)
[8] Barabasi, A.L., Network medicine – from obesity to the “diseasome”, N. engl. J. med., 357, 404-407, (2007)
[9] Barabasi, A.L.; Oltvai, Z.N., Network biology: understanding the Cell’s functional organization, Nat. rev. genet., 5, 101-113, (2004)
[10] Bas, D.C.; Rogers, D.M.; Jensen, J.H., Very fast prediction and rationalization of pKa values for protein – ligand complexes, Proteins, 73, 765-783, (2008)
[11] Bleakley, K.; Yamanishi, Y., Supervised prediction of drug-target interactions using bipartite local models, Bioinformatics, 25, 2397-2403, (2009)
[12] Bonchev, D., On the complexity of directed biological networks, SAR QSAR environ. res., 14, 199-214, (2003)
[13] Bonchev, D., Complexity analysis of yeast proteome network, Chem. biodivers., 1, 312-326, (2004)
[14] Bonchev, D.; Buck, G.A., From molecular to biological structure and back, J. chem. inf. model., 47, 909-917, (2007)
[15] Bonchev, D.; Thomas, S.; Apte, A.; Kier, L.B., Cellular automata modelling of biomolecular networks dynamics, SAR QSAR, Environ. res., 21, 77-102, (2010)
[16] Bornholdt, S.; Schuster, H.G., Handbook of graphs and complex networks: from the genome to the Internet, (2003), WILEY-VCH GmbH & CO., KGa Wheinheim
[17] Boustie, J.; Stigliani, J.L.; Montanha, J.; Amoros, M.; Payard, M.; Girre, L., Antipoliovirus structure-activity relationships of some aporphine alkaloids, J. nat. prod., 61, 480-484, (1998)
[18] Caballero, J.; Fernandez, M., Linear and nonlinear modeling of antifungal activity of some heterocyclic ring derivatives using multiple linear regression and Bayesian-regularized neural networks, J. mol. model., 12, 168-181, (2006)
[19] Camacho, M.R.; Kirby, G.C.; Warhurst, D.C.; Croft, S.L.; Phillipson, J.D., Oxoaporphine alkaloids and quinones from stephania dinklagei and evaluation of their antiprotozoal activities, Planta med., 66, 478-480, (2000)
[20] Campillos, M.; Kuhn, M.; Gavin, A.C.; Jensen, L.J.; Bork, P., Drug target identification using side-effect similarity, Science, 321, 263-266, (2008)
[21] Chen, X.; Fang, Y.; Yao, L.; Chen, Y.; Xu, H., Does drug-target have a likeness?, Methods inf. med., 46, 360-366, (2007)
[22] Chou, K.C., Prediction of G-protein-coupled receptor classes, J. proteome res., 4, 1413-1418, (2005)
[23] Chou, K.C.; Elrod, D.W., Bioinformatical analysis of G-protein-coupled receptors, J. proteome res., 1, 429-433, (2002)
[24] Chou, K.C.; Elrod, D.W., Prediction of enzyme family classes, J. proteome res., 2, 183-190, (2003)
[25] Chou, K.C.; Shen, H.B., Predicting eukaryotic protein subcellular location by fusing optimized evidence-theoretic K-nearest neighbor classifiers, J. proteome res., 5, 1888-1897, (2006)
[26] Chou, K.C.; Shen, H.B., Large-scale predictions of Gram-negative bacterial protein subcellular locations, J. proteome res., 5, 3420-3428, (2006)
[27] Chou, K.C., Shen, H.B., 2007. MemType-2L: a web server for predicting membrane proteins and their types by incorporating evolution information through Pse-PSSM. Biochem. Biophys. Res. Commun., doi: 10.1016/j.bbrc.2007.1006.1027.
[28] Chou, K.C.; Shen, H.B., Cell-ploc: a package of web servers for predicting subcellular localization of proteins in various organisms, Nat. protoc., 3, 153-162, (2008)
[29] Clemente, J.C.; Govindasamy, L.; Madabushi, A.; Fisher, S.Z.; Moose, R.E.; Yowell, C.A.; Hidaka, K.; Kimura, T.; Hayashi, Y.; Kiso, Y.; Agbandje-McKenna, M.; Dame, J.B.; Dunn, B.M.; McKenna, R., Structure of the aspartic protease plasmepsin 4 from the malarial parasite plasmodium malariae bound to an allophenylnorstatine-based inhibitor, Acta crystallogr. D biol. crystallogr., 62, 246-252, (2006)
[30] Concu, R.; Podda, G.; Uriarte, E.; Gonzalez-Diaz, H., Computational chemistry study of 3D-structure – function relationships for enzymes based on Markov models for protein electrostatic, HINT, and van der Waals potentials, J. comput. chem., 30, 1510-1520, (2009)
[31] Concu, R.; Podda, G.; Ubeira, F.M.; Gonzalez-Diaz, H., Review of QSAR models for enzyme classes of drug targets: theoretical background and applications in parasites, hosts, and other organisms, Curr. pharm. des., 16, 2710-2723, (2010)
[32] Concu, R.; Dea-Ayuela, M.A.; Perez-Montoto, L.G.; Bolas-Fernandez, F.; Prado-Prado, F.J.; Podda, G.; Uriarte, E.; Ubeira, F.M.; Gonzalez-Diaz, H., Prediction of enzyme classes from 3D structure: a general model and examples of experimental-theoretic scoring of peptide mass fingerprints of leishmania proteins, J. proteome res., 8, 4372-4382, (2009)
[33] Concu, R.; Dea-Ayuela, M.A.; Perez-Montoto, L.G.; Prado-Prado, F.J.; Uriarte, E.; Bolas-Fernandez, F.; Podda, G.; Pazos, A.; Munteanu, C.R.; Ubeira, F.M.; Gonzalez-Diaz, H., 3D entropy and moments prediction of enzyme classes and experimental-theoretic study of peptide fingerprints in leishmania parasites, Biochim. biophys. acta, 1794, 1784-1794, (2009)
[34] Cully, D.F.; Wilkinson, H.; Vassilatis, D.K.; Etter, A.; Arena, J.P., Molecular biology and electrophysiology of glutamate-gated chloride channels of invertebrates, Parasitology, 113, Suppl., S191-S200, (1996)
[35] Dea-Ayuela, M.A.; Bolás-Fernández, F., Two-dimensional electrophoresis and mass spectrometry for the identification of species-specific trichinella antigens, Vet. parasitol., 132, 43-49, (2005)
[36] Dea-Ayuela, M.A.; Perez-Castillo, Y.; Meneses-Marcel, A.; Ubeira, F.M.; Bolas-Fernandez, F.; Chou, K.C.; Gonzalez-Diaz, H., HP-lattice QSAR for dynein proteins: experimental proteomics (2D-electrophoresis, mass spectrometry) and theoretic study of a leishmania infantum sequence, Bioorg. med. chem., 16, 7770-7776, (2008)
[37] Dufe, V.T.; Qiu, W.; Muller, I.B.; Hui, R.; Walter, R.D.; Al-Karadaghi, S., Crystal structure of plasmodium falciparum spermidine synthase in complex with the substrate decarboxylated S-adenosylmethionine and the potent inhibitors 4MCHA and adodato, J mol biol, 373, 167-177, (2007)
[38] Edwards, S.R.; Campbell, A.J.; Sheers, M.; Moore, R.J.; Montague, P.E., Protection of fasciola hepatica against flukicidal action of the amine of diamphenethide in vitro, Mol. biochem. parasitol., 2, 339-348, (1981)
[39] Edwards, S.R.; Campbell, A.J.; Sheers, M.; Moore, R.J.; Montague, P.E., Studies of the effect of diamphenethide and oxyclozanide on the metabolism of fasciola hepatica, Mol. biochem. parasitol., 2, 323-338, (1981)
[40] Estrada, E., Protein bipartivity and essentiality in the yeast protein – protein interaction network, J. proteome res., 5, 2177-2184, (2006)
[41] Estrada, E., Virtual identification of essential proteins within the protein interaction network of yeast. proteomics, 6, 35-40, (2006)
[42] Evans, A.M.; Martin, R.J., Activation and cooperative multi-ion block of single nicotinic-acetylcholine channel currents of ascaris muscle by the tetrahydropyrimidine anthelmintic, morantel, Br. J. pharmacol., 118, 1127-1140, (1996)
[43] Fernandez, M.; Caballero, J.; Tundidor-Camba, A., Linear and nonlinear QSAR study of N-hydroxy-2-[(phenylsulfonyl)amino]acetamide derivatives as matrix metalloproteinase inhibitors, Bioorg. med. chem., 14, 4137-4150, (2006)
[44] Fink, H., On the problem of the minimal inhibitory concentration (MIC) of oxacillin against staphylococci, Arzneim-forsch, 15, 630-632, (1965)
[45] Frisch, M.J.T.; Kudin, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Montgomery, J.A.; Vreven, T.; Kudin, K.N.; Burant, J.C.; Millam, J.M.; Iyengar, S.S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G.A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J.E.; Hratchian, H.P.; Cross, J.B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R.E.; Yazyev, O.; Austin, A.J.; Cammi, R.; Pomelli, C.; Ochterski, J.W.; Ayala, P.Y.; Morokuma, K.; Voth, G.A.; Salvador, P.; Dannenberg, J.J.; Zakrzewski, V.G.; Dapprich, S.; Daniels, A.D.; Strain, M.C.; Farkas, O.; Malick, D.K.; Rabuck, A.D.; Raghavachari, K.; Foresman, J.B.; Ortiz, J.V.; Cui, Q.; Baboul, A.G.; Clifford, S.; Cioslowski, J.; Stefanov, B.B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R.L.; Fox, D.J.; Keith, T.; Al-Laham, M.A.; Peng, C.Y.; Nanayakkara, A.; Challacombe, M.; Gill, P.M.W.; Johnson, B.; Chen, W.; Wong, M.W.; Gonzalez, C.; Pople, J.A., Gaussian 03, revision B.03, (2003), Gaussian, Inc. Pittsburgh, PA
[46] Froimowitz, M., Hyperchem: a software package for computational chemistry and molecular modeling, Biotechniques, 14, 1010-1013, (1993)
[47] Geppert, H.; Humrich, J.; Stumpfe, D.; Gartner, T.; Bajorath, J., Ligand prediction from protein sequence and small molecule information using support vector machines and fingerprint descriptors, J. chem. inf. model., 49, 767-779, (2009)
[48] Gharahdaghi, F.; Weinberg, C.R.; Meagher, D.A.; Imai, B.S.; Mische, S.M., Mass spectrometric identification of proteins from silver-stained polyacrylamide gel: a method for the removal of silver ions to enhance sensitivity, Electrophoresis, 20, 601-605, (1999)
[49] Gia, O.; Marciani Magno, S.; González-Díaz, H.; Quezada, E.; Santana, L.; Uriarte, E.; Dalla Via, L., Design, synthesis and photobiological properties of 3,4-cyclopentenepsoralens, Bioorg. med. chem., 13, 809-817, (2005)
[50] Giddings, M.C.; Shah, A.A.; Gesteland, R.; Moore, B., Genome-based peptide fingerprint scanning, Proc. natl. acad. sci. USA, 100, 20-25, (2003)
[51] Giuliani, A., 2010. Collective motions and specific effectors: a statistical mechanics perspective on biological regulation. BMC Genomics 11 (Suppl. 1), S2. doi:10.1186/1471-2164-11-S1-S2.
[52] Goh, K.I.; Cusick, M.E.; Valle, D.; Childs, B.; Vidal, M.; Barabasi, A.L., The human disease network, Proc. natl. acad. sci. USA, 104, 8685-8690, (2007)
[53] Gonzalez-Diaz, H., Network topological indices, drug metabolism, and distribution, Curr. drug metab., 11, 283-284, (2010)
[54] Gonzalez-Diaz, H.; Prado-Prado, F.; Ubeira, F.M., Predicting antimicrobial drugs and targets with the MARCH-INSIDE approach, Curr. top. med. chem., 8, 1676-1690, (2008)
[55] Gonzalez-Diaz, H.; Saiz-Urra, L.; Molina, R.; Santana, L.; Uriarte, E., A model for the recognition of protein kinases based on the entropy of 3D van der Waals interactions, J. proteome res., 6, 904-908, (2007)
[56] Gonzalez-Diaz, H.; Bonet, I.; Teran, C.; De Clercq, E.; Bello, R.; Garcia, M.M.; Santana, L.; Uriarte, E., ANN-QSAR model for selection of anticancer leads from structurally heterogeneous series of compounds, Eur. J. med. chem., 42, 580-585, (2007)
[57] González-Díaz, H., QSAR and complex networks in pharmaceutical design, microbiology, parasitology, toxicology, Cancer neurosci. curr. pharm. des., 16, 2598-2600, (2010)
[58] González-Díaz, H.; Vilar, S.; Santana, L.; Uriarte, E., Medicinal chemistry and bioinformatics—current trends in drugs discovery with networks topological indices, Curr. top. med. chem., 7, 1025-1039, (2007)
[59] González-Díaz, H.; Pérez-Castillo, Y.; Podda, G.; Uriarte, E., Computational chemistry comparison of stable/nonstable protein mutants classification models based on 3D and topological indices, J. comput. chem., 28, 1990-1995, (2007)
[60] González-Díaz, H.; González-Díaz, Y.; Santana, L.; Ubeira, F.M.; Uriarte, E., Proteomics, networks and connectivity indices. proteomics, 8, 750-778, (2008)
[61] González-Díaz, H.; Aguero-Chapin, G.; Varona-Santos, J.; Molina, R.; de la Riva, G.; Uriarte, E., 2D RNA-QSAR: assigning ACC oxidase family membership with stochastic molecular descriptors; isolation and prediction of a sequence from psidium guajava L, Bioorg. med. chem. lett., 15, 2932-2937, (2005)
[62] Good, A.C.; Hodgkin, E.E.; Richards, W.G., Similarity screening of molecular data sets, J. comput. aided mol. des., 6, 513-520, (1992)
[63] Han, L., Cui, J., Lin, H., Ji, Z., Cao, Z., Li, Y., Chen, Y., 2006. Recent progresses in the application of machine learning approach for predicting protein functional class independent of sequence similarity. Proteomics 6, 4023-4037.
[64] Henderson, K.A.; Streltsov, V.A.; Coley, A.M.; Dolezal, O.; Hudson, P.J.; Batchelor, A.H.; Gupta, A.; Bai, T.; Murphy, V.J.; Anders, R.F.; Foley, M.; Nuttall, S.D., Structure of an ignar-AMA1 complex: targeting a conserved hydrophobic cleft broadens malarial strain recognition, Structure, 15, 1452-1466, (2007)
[65] Hirosawa, M.; Hoshida, M.; Ishikawa, M.; Toya, T., MASCOT: multiple alignment system for protein sequences based on three-way dynamic programming, Comput. appl. biosci., 9, 161-167, (1993)
[66] Humberto González-Díaz, F.P.-P.A.F.M.U., Predicting antimicrobial drugs and targets with the MARCH INSIDE approach, Curr. top. med. chem., 8, 1676-1690, (2008)
[67] Hypercube, I., 2002. Hyperchem 7.0, Gainesville, FL, USA.
[68] Hypercube.Inc, Hyperchem software. release 7.5 for windows, molecular modeling system, (2002), Hypercube Inc. Gainesville, FL, USA
[69] Kier, L.B.; Bonchev, D.; Buck, G.A., Modeling biochemical networks: a cellular-automata approach, Chem. biodivers., 2, 233-243, (2005)
[70] Koenig, T.; Menze, B.H.; Kirchner, M.; Monigatti, F.; Parker, K.C.; Patterson, T.; Steen, J.J.; Hamprecht, F.A.; Steen, H., Robust prediction of the MASCOT score for an improved quality assessment in mass spectrometric proteomics, J. proteome res., 7, 3708-3717, (2008)
[71] Lam, R.L.; Welch, W.J., Comparison of methods based on diversity and similarity for molecule selection and the analysis of drug discovery data, Methods mol. biol., 275, 301-316, (2004)
[72] Lei, Z.; Elmer, A.M.; Watson, B.S.; Dixon, R.A.; Mendes, P.J.; Sumner, L.W., A two-dimensional electrophoresis proteomic reference map and systematic identification of 1367 proteins from a cell suspension culture of the model legume medicago truncatula, Mol. cell proteomics, 4, 1812-1825, (2005)
[73] Leung, K.Y., Lescuyer, P.,Campbell, J., Byers, H.L., Allard, L., Sanchez, J.C., Ward, M.A., 2005. A novel strategy using MASCOT distiller for analysis of cleavable isotope-coded affinity tag data to quantify protein changes in plasma. Proteomics 5, 3040-3044.
[74] Li, J.; Lei, B.; Liu, H.; Li, S.; Yao, X.; Liu, M.; Gramatica, P., QSAR study of malonyl-coa decarboxylase inhibitors using GA-MLR and a new strategy of consensus modeling, J. comput. chem., 29, 2636-2647, (2008)
[75] Li, Q.; Lai, L., Prediction of potential drug targets based on simple sequence properties, BMC bioinformatics, 8, 353, (2007)
[76] Likhitwitayawuid, K.; Angerhofer, C.K.; Chai, H.; Pezzuto, J.M.; Cordell, G.A.; Ruangrungsi, N., Cytotoxic and antimalarial alkaloids from the tubers of stephania pierrei, J. nat. prod., 56, 1468-1478, (1993)
[77] Lin, W.Z.; Xiao, X.; Chou, K.C., GPCR-GIA: a web-server for identifying G-protein coupled receptors and their families with grey incidence analysis, Protein eng. des. sel., 22, 699-705, (2009)
[78] Liu, Y.; Beveridge, D.L., Exploratory studies of ab initio protein structure prediction: multiple copy simulated annealing, AMBER energy functions, and a generalized Born/solvent accessibility solvation model, Proteins, 46, 128-146, (2002)
[79] Loscalzo, J.; Kohane, I.; Barabasi, A.L., Human disease classification in the postgenomic era: a complex systems approach to human pathobiology, Mol. syst. biol., 3, 124, (2007)
[80] Maeda, A.; Okazaki, T.; Inoue, M.; Kitazono, T.; Yamasaki, M.; Lemonnier, F.A.; Ozaki, S., Immunosuppressive effect of angiotensin receptor blocker on stimulation of mice CTLs by angiotensin II, Int. immunopharmacol., 9, 1183-1188, (2009)
[81] Maizels, R.M.; Denham, D.A., Diethylcarbamazine (DEC): immunopharmacological interactions of an anti-filarial drug, Parasitology, 105, Suppl., S49-S60, (1992)
[82] Managbanag, J.R.; Witten, T.M.; Bonchev, D.; Fox, L.A.; Tsuchiya, M.; Kennedy, B.K.; Kaeberlein, M., Shortest-path network analysis is a useful approach toward identifying genetic determinants of longevity, Plos one, 3, e3802, (2008)
[83] Marchler-Bauer, A.; Bryant, S.H., CD-search: protein domain annotations on the fly, Nucleic acids res., 32, W327-W331, (2004)
[84] Martin, R.J., Gamma-aminobutyric acid- and piperazine-activated single-channel currents from ascaris suum body muscle, Br. J. pharmacol., 84, 445-461, (1985)
[85] Martin, R.J., Neuromuscular transmission in nematode parasites and antinematodal drug action, Pharmacol. ther., 58, 13-50, (1993)
[86] Martin, R.J., An electrophysiological preparation of ascaris suum pharyngeal muscle reveals a glutamate-gated chloride channel sensitive to the avermectin analogue, milbemycin D, Parasitology, 112, Part 2, 247-252, (1996)
[87] Mascarenhas, N.M.; Ghoshal, N., Combined ligand and structure based approaches for narrowing on the essential physicochemical characteristics for CDK4 inhibition, J. chem. inf. model., 48, 1325-1336, (2008)
[88] Mazurie, A.; Bonchev, D.; Schwikowski, B.; Buck, G.A., Phylogenetic distances are encoded in networks of interacting pathways, Bioinformatics, 24, 2579-2585, (2008)
[89] Mazurie, A.; Bonchev, D.; Schwikowski, B.; Buck, G.A., Evolution of metabolic network organization, BMC syst. biol., 4, 59, (2010)
[90] McKellar, Q.A.; Bogan, J.A.; von Fellenberg, R.L.; Ludwig, B.; Cawley, G.D., Pharmacokinetic, biochemical and tolerance studies on carprofen in the horse, Equine vet. J., 23, 280-284, (1991)
[91] Menk, M.; von Haefen, C.; Funke-Kaiser, H.; Sifringer, M.; Schefe, J.H.; Kirsch, S.; Seidel, K.; Reinemund, J.; Steckelings, U.M.; Unger, T.; Spies, C.D., Ethanol-induced downregulation of the angiotensin AT2 receptor in murine fibroblasts is mediated by PARP-1, Alcohol, 44, 495-506, (2010)
[92] Michel, J.; Verdonk, M.L.; Essex, J.W., Protein-ligand binding affinity predictions by implicit solvent simulations: a tool for lead optimization?, J. med. chem., 49, 7427-7439, (2006)
[93] Montanha, J.A.; Amoros, M.; Boustie, J.; Girre, L., Anti-herpes virus activity of aporphine alkaloids, Planta med., 61, 419-424, (1995)
[94] Mulder, J.E., Brien, J.F., Racz, W.J.,Takahashi, T., Massey, T.E., 2011. Mechanisms of amiodarone and desethylamiodarone cytotoxicity in non-transformed human peripheral lung epithelial cells. J. Pharmacol. Exp. Ther. 336, 551-559.
[95] Munoz, V.; Sauvain, M.; Mollinedo, P.; Callapa, J.; Rojas, I.; Gimenez, A.; Valentin, A.; Mallie, M., Antimalarial activity and cytotoxicity of (−)-roemrefidine isolated from the stem bark of sparattanthelium amazonum, Planta med., 65, 448-449, (1999)
[96] Munteanu, C.R.; Vazquez, J.M.; Dorado, J.; Sierra, A.P.; Sanchez-Gonzalez, A.; Prado-Prado, F.J.; Gonzalez-Diaz, H., Complex network spectral moments for ATCUN motif DNA cleavage: first predictive study on proteins of human pathogen parasites, J. proteome res., 8, 5219-5228, (2009)
[97] Naumann, T.; Matter, H., Structural classification of protein kinases using 3D molecular interaction field analysis of their ligand binding sites: target family landscapes, J. med. chem., 45, 2366-2378, (2002)
[98] Onnela, J.P.; Saramaki, J.; Hyvonen, J.; Szabo, G.; Lazer, D.; Kaski, K.; Kertesz, J.; Barabasi, A.L., Structure and tie strengths in mobile communication networks, Proc. natl. acad. sci. USA, 104, 7332-7336, (2007)
[99] Park, J.; Barabasi, A.L., Distribution of node characteristics in complex networks, Proc. natl. acad. sci. USA, 104, 17916-17920, (2007)
[100] Parr, R.G.; Pearson, R.G., Absolute hardness: companion parameter to absolute electronegativity, J. am. chem. soc., 105, 7512-7516, (1983)
[101] Parr, R.G.; Szentpály, L.V.; Liu, S., Density functional theory of atoms and molecules, (1989), Oxford University Press New York
[102] Parr, R.G.; Szentpály, L.V.; Liu, S., Electrophilicity index, J. am. chem. soc., 121, 1922-1924, (1999)
[103] Parr, R.G.; Donnelly, R.A.; Levy, M.; Palke, W.E., Electronegativity: the density functional viewpoint, J. chem. phys., 68, 3801, (1978)
[104] Pham, T.A.; Jain, A.N., Parameter estimation for scoring protein – ligand interactions using negative training data, J. med. chem., 49, 5856-5868, (2006)
[105] Prado-Prado, F.J.; Garcia-Mera, X.; Gonzalez-Diaz, H., Multi-target spectral moment QSAR versus ANN for antiparasitic drugs against different parasite species, Bioorg. med. chem., 18, 2225-2231, (2010)
[106] Prado-Prado, F.J.; Gonzalez-Diaz, H.; Santana, L.; Uriarte, E., Unified QSAR approach to antimicrobials. part 2: predicting activity against more than 90 different species in order to halt antibacterial resistance, Bioorg. med. chem., 15, 897-902, (2007)
[107] Prado-Prado, F.J.; Gonzalez-Diaz, H.; de la Vega, O.M.; Ubeira, F.M.; Chou, K.C., Unified QSAR approach to antimicrobials. part 3: first multi-tasking QSAR model for input-coded prediction, structural back-projection, and complex networks clustering of antiprotozoal compounds, Bioorg. med. chem., 16, 5871-5880, (2008)
[108] Prado-Prado, F.J.; Martinez de la Vega, O.; Uriarte, E.; Ubeira, F.M.; Chou, K.C.; Gonzalez-Diaz, H., Unified QSAR approach to antimicrobials. 4. multi-target QSAR modeling and comparative multi-distance study of the giant components of antiviral drug – drug complex networks, Bioorg. med. chem., 17, 569-575, (2009)
[109] Raha, K.; Peters, M.B.; Wang, B.; Yu, N.; Wollacott, A.M.; Westerhoff, L.M.; Merz, K.M., The role of quantum mechanics in structure-based drug design, Drug discovery. today, 12, 725-731, (2007)
[110] Redman, C.A.; Robertson, A.; Fallon, P.G.; Modha, J.; Kusel, J.R.; Doenhoff, M.J.; Martin, R.J., Praziquantel: an urgent and exciting challenge, Parasitol. today, 12, 14-20, (1996)
[111] Réka, A.; Barabasi, A.-L., Statistical mechanics of complex networks, Rev. mod. phys., 74, 47-97, (2002) · Zbl 1205.82086
[112] Robertson, S.J.; Martin, R.J., Levamisole-activated single-channel currents from muscle of the nematode parasite ascaris suum, Br. J. pharmacol., 108, 170-178, (1993)
[113] Rodriguez-Soca, Y., Munteanu, C.R., Prado-Prado, F.J., Dorado, J., Pazos Sierra, A., Gonzalez-Diaz, H., 2009a. Trypano-PPI: a web server for prediction of unique targets in trypanosome proteome by using electrostatic parameters of protein – protein interactions. J. Proteome Res., doi: 10.1021/pr900827b.
[114] Rodriguez-Soca, Y., Munteanu, C.R., Dorado, J., Rabuñal, J., Pazos, A., González-Díaz, 2009b. Plasmod-PPI: a web-server predicting complex biopolymer targets in plasmodium with entropy measures of protein – protein interactions. Polymer , doi: 10.1016/j.polymer.2009.11.029.
[115] Rodriguez-Soca, Y.; Munteanu, C.R.; Dorado, J.; Pazos, A.; Prado-Prado, F.J.; Gonzalez-Diaz, H., Trypano-PPI: a web server for prediction of unique targets in trypanosome proteome by using electrostatic parameters of protein – protein interactions, J proteome res., 9, 1182-1190, (2010)
[116] Roos, M.H.; Kwa, M.S.G.; Grant, W.N., New genetic and practical implications of selection for anthelmintic resistance in parasitic nematodes, Parasitol. today, 11, 148-150, (1995)
[117] Rudnick, P.A.; Wang, Y.; Evans, E.; Lee, C.S.; Balgley, B.M., Large scale analysis of MASCOT results using a mass accuracy-based threshold (MATH) effectively improves data interpretation, J. proteome res., 4, 1353-1360, (2005)
[118] Santana, L.; Uriarte, E.; Gonzalez-Diaz, H.; Zagotto, G.; Soto-Otero, R.; Mendez-Alvarez, E., A QSAR model for in silico screening of MAO-A inhibitors. prediction, synthesis, and biological assay of novel coumarins, J. med. chem., 49, 1149-1156, (2006)
[119] Santana, L.; Uriarte, E.; Gonzalez-Diaz, H.; Zagotto, G.; Soto-Otero, R.; Mendez-Alvarez, E., A QSAR model for in silico screening of MAO-A inhibitors. prediction, synthesis, and biological assay of novel coumarins, J. med. chem., 49, 1149-1156, (2006)
[120] Santana, L.; Gonzalez-Diaz, H.; Quezada, E.; Uriarte, E.; Yanez, M.; Vina, D.; Orallo, F., Quantitative structure – activity relationship and complex network approach to monoamine oxidase a and B inhibitors, J. med. chem., 51, 6740-6751, (2008)
[121] Schulman, M.D.; Ostlind, D.A.; Valentino, D., Mechanism of action of MK-401 against fasciola hepatica: inhibition of phosphoglycerate kinase, Mol. biochem. parasitol., 5, 133-145, (1982)
[122] Shen, H.B.; Chou, K.C., Nuc-ploc: a new web-server for predicting protein subnuclear localization by fusing pseaa composition and psepssm, Protein eng. des. sel., 20, 561-567, (2007)
[123] Shen, H.B.; Chou, K.C., Pseaac: a flexible web server for generating various kinds of protein pseudo amino acid composition, Anal. biochem., 373, 386-388, (2008)
[124] Sobarzo-Sanchez, E.; De la Fuente, J.; Castedo, L., Synthesis and total assignment of 1H and 13C NMR spectra of new oxoisoaporphines by long-range heteronuclear correlations, Magn. reson chem, 43, 12, 1080-1083, (2005)
[125] StatSoft.Inc., 2002. STATISTICA (data analysis software system), version 6.0. www.statsoft.com.Statsoft, Inc., 6.0
[126] Sternberg, M.J.; King, R.D.; Lewis, R.A.; Muggleton, S., Application of machine learning to structural molecular biology, Philos. trans. R. soc. lond. B biol. sci., 344, 365-371, (1994)
[127] Stevigny, C.; Bailly, C.; Quetin-Leclercq, J., Cytotoxic and antitumor potentialities of aporphinoid alkaloids, Curr. med. chem. anticancer agents, 5, 173-182, (2005)
[128] Stévigny, C.; Block, S.; Pauw-Gillet, M.C.D.; Hoffmann, E.d.; Llabrès, G.; Adjakidjé, V.; Quetin-Leclercq, J., Cytotoxic aporphine alkaloids from cassytha filiformis, Planta med., 68, 1042-1044, (2002)
[129] Tamura, M.; Takano, S., Influence of ph of media on the minimal inhibitory concentration of cycloserine to mycobacterium tuberculosis, Kekkaku, 40, 213-218, (1965)
[130] Thimm, M.; Goede, A.; Hougardy, S.; Preissner, R., Comparison of 2D similarity and 3D superposition. application to searching a conformational drug database, J. chem. inf. comput. sci., 44, 1816-1822, (2004)
[131] Thomas, S.; Bonchev, D., A survey of current software for network analysis in molecular biology, Hum. genomics, 4, 353-360, (2010)
[132] Todeschini, R.; Consonni, V., Handbook of molecular descriptors, (2002), Wiley-VCH
[133] Vassura, M.; Margara, L.; Di Lena, P.; Medri, F.; Fariselli, P.; Casadio, R., Reconstruction of 3D structures from protein contact maps, IEEE/ACM trans. comput. biol. bioinform., 5, 357-367, (2008)
[134] Vijayan, R.S.; Bera, I.; Prabu, M.; Saha, S.; Ghoshal, N., Combinatorial library enumeration and lead hopping using comparative interaction fingerprint analysis and classical 2D QSAR methods for seeking novel GABA(A) alpha(3) modulators, J. chem. inf. model., 49, 2498-2511, (2009)
[135] Vilar, S.; Santana, L.; Uriarte, E., Probabilistic neural network model for the in silico evaluation of anti-HIV activity and mechanism of action, J. med. chem., 49, 1118-1124, (2006)
[136] Vina, D.; Uriarte, E.; Orallo, F.; Gonzalez-Diaz, H., Alignment-free prediction of a drug-target complex network based on parameters of drug connectivity and protein sequence of receptors, Mol. pharm., 6, 825-835, (2009)
[137] Wang, Y.; Bajorath, J., Development of a compound class-directed similarity coefficient that accounts for molecular complexity effects in fingerprint searching, J. chem. inf. model., 49, 1369-1376, (2009)
[138] Wu, Z.C.; Xiao, X.; Chou, K.C., 2D-MH: a web-server for generating graphic representation of protein sequences based on the physicochemical properties of their constituent amino acids, J. theor. biol., 267, 29-34, (2010) · Zbl 1410.92089
[139] Xiao, X.; Lin, W.Z., Application of protein grey incidence degree measure to predict protein quaternary structural types, Amino acids, 37, 741-749, (2009)
[140] Xiao, X.; Shao, S.H.; Chou, K.C., A probability cellular automaton model for hepatitis B viral infections, Biochem. biophys. res. commun., 342, 605-610, (2006)
[141] Xiao, X.; Lin, W.Z.; Chou, K.C., Using grey dynamic modeling and pseudo amino acid composition to predict protein structural classes, J. comput. chem., 29, 2018-2024, (2008)
[142] Xiao, X.; Wang, P.; Chou, K.C., Predicting protein structural classes with pseudo amino acid composition: an approach using geometric moments of cellular automaton image, J. theor. biol., 254, 691-696, (2008) · Zbl 1400.92416
[143] Xiao, X.; Wang, P.; Chou, K.C., GPCR-CA: a cellular automaton image approach for predicting G-protein-coupled receptor functional classes, J. comput. chem., 30, 1414-1423, (2009)
[144] Xiao, X., Wang, P., Chou, K.C., in press. Quat-2L:aweb-server for predicting protein quaternary structural attributes. Mol. Div., doi:10.1007/s11030-010-9227-8.
[145] Xiao, X.; Shao, S.; Ding, Y.; Huang, Z.; Chen, X.; Chou, K.C., Using cellular automata to generate image representation for biological sequences, Amino acids, 28, 29-35, (2005)
[146] Xiao, X.; Shao, S.; Ding, Y.; Huang, Z.; Chen, X.; Chou, K.C., An application of gene comparative image for predicting the effect on replication ratio by HBV virus gene missense mutation, J. theor. biol., 235, 555-565, (2005)
[147] Xie, L.; Xie, L.; Bourne, P.E., A unified statistical model to support local sequence order independent similarity searching for ligand-binding sites and its application to genome-based drug discovery, Bioinformatics, 25, i305-i312, (2009)
[148] Yamanishi, Y.; Araki, M.; Gutteridge, A.; Honda, W.; Kanehisa, M., Prediction of drug-target interaction networks from the integration of chemical and genomic spaces, Bioinformatics, 24, i232-i240, (2008)
[149] Yang, C.Y.; Sun, H.; Chen, J.; Nikolovska-Coleska, Z.; Wang, S., Importance of ligand reorganization free energy in protein-ligand binding-affinity prediction, J. am. chem. soc., 131, 13709-13721, (2009)
[150] Yu, B.W.; Meng, L.H.; Chen, J.Y.; Zhou, T.X.; Cheng, K.F.; Ding, J.; Qin, G.W., Cytotoxic oxoisoaporphine alkaloids from menispermum dauricum, J. nat. prod., 64, 968-970, (2001)
[151] Zhang, S.; Golbraikh, A.; Tropsha, A., Development of quantitative structure-binding affinity relationship models based on novel geometrical chemical descriptors of the protein – ligand interfaces, J. med. chem., 49, 2713-2724, (2006)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.