×

zbMATH — the first resource for mathematics

A coupled lattice Boltzmann model for simulating reactive transport in \(\mathrm{CO}_{2}\) injection. (English) Zbl 1395.76100
Summary: A lattice Boltzmann method (LBM) based computational REV model of geochemical reaction is proposed to describe the geochemical reactions of both solute ions transport and solid phase \(\mathrm{CaCO}_{3}\) dissolution in \(\mathrm{CO}_{2}\)-saturated water as well as their effects on the velocity fields of fluid flows during a \(\mathrm{CO}_{2}\) injection process. This includes the porosity change with the calcium carbonate dissolution and its feedback impacts on fluid flows. The proposed model is implemented in our in-house LBM code and verified through a hypothetic numerical experiment. The interaction between chemical reactions and fluid advection-diffusion processes is investigated through comparing simulation results of different species distribution at different stages. It has been well known that even a small porosity change induced by the chemical reaction would cause an obvious permeability change. Our present results validate that rule, and furthermore yield a numerical relationship between porosity change and fluid velocity increase at different time steps. This demonstrates that the proposed LBM geochemical reaction model may serve as a reliable approach to investigate the reactive transport in reservoirs of \(\mathrm{CO}_{2}\) injection.
MSC:
76S05 Flows in porous media; filtration; seepage
76M28 Particle methods and lattice-gas methods
Software:
PhreeqcRM; PHREEQC
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] IPCC, (Metz, B.; Davidson, O.; de Coninck, H. C.; Loos, M.; Meyer, L. A., IPCC Special Report on Carbon Dioxide Capture and Storage, (2005), Cambridge University Press Cambridge, UK, New York, USA)
[2] Gaus, I.; Audigane, P.; Andre, L.; Lions, J.; Jacquemet, N.; Durst, P.; Czernichowski-Lauriol, I.; Azaroual, M., Geochemical modelling and solute transport modelling for CO_{2} storage, what to expect from it?, Int. J. Greenhouse Gas Control, 2, 605-625, (2008)
[3] Gaus, I., Role and impact of CO_{2}-rock interactions during CO_{2} storage in sedimentary rocks, Int. J. Greenhouse Gas Control, 4, 73-89, (2010)
[4] Spycher, N.; Pruess, K.; Ennis-King, J., CO_{2}-H_{2}O mixtures in the geological sequestration of CO_{2}. I. assessment and calculation of mutual solubilities from 12 to 100°C and up to 600 bar, Geochim. Cosmochim. Acta, 67, 3015-3031, (2003)
[5] Spycher, N.; Pruess, K., CO_{2}-H_{2}O mixtures in the geological sequestration of CO_{2}. II. partitioning in chloride brines at 12-100°C and up to 600 bar, Geochim. Cosmochim. Acta, 69, 3309-3320, (2005)
[6] Xu, T.; Apps, J.; Pruess, K., Reactive geochemical transport simulation to study mineral trapping for CO_{2} disposal in deep arenaceous formations, J. Geophys. Res., 108, 2071, (2003)
[7] Xu, T.; Apps, J.; Pruess, K., Mineral sequestration of carbon dioxide in a sandstone-shale system, Chem. Geol., 217, 295-318, (2005)
[8] Pruess, K.; Garcia, J., Multiphase flow dynamics during CO_{2} disposal into saline aquifers, Environ. Geol., 42, 282-295, (2002)
[9] Li, Q., Coupled reactive transport model for heat and density driven flow in CO_{2} storage in saline aquifers, J. Hazard. Toxic. Radioact. Waste, 15, 251-258, (2011)
[10] Zhao, C.; Hobbs, B. E.; Ord, A., Fundamentals of computational geoscience: numerical methods and algorithms, (2009), Springer Berlin · Zbl 1163.86001
[11] Zhao, C.; Reid, L. B.; Regenauer-Lieb, K., Some fundamental issues in computational hydrodynamics of mineralization: a review, J. Geochem. Explor., 112, 21-34, (2012)
[12] Ord, A.; Hobbs, B. E.; Lester, D. R., The mechanics of hydrothermal systems: I. ore systems as chemical reactors, Ore Geol. Rev., 49, 1-44, (2012)
[13] Zhao, C.; Hobbs, B. E.; Muhlhaus, H. B., Finite element modelling of temperature gradient driven rock alteration and mineralization in porous rock masses, Comput. Methods Appl. Mech. Eng., 165, 175-186, (1998) · Zbl 0954.74076
[14] Zhao, C.; Hobbs, B. E.; Walshe, J. L.; Muhlhaus, H. B.; Ord, A., Finite element modelling of fluid-rock interaction problems in pore-fluid saturated hydrothermal/sedimentary basins, Comput. Methods Appl. Mech. Eng., 190, 2277-2293, (2001) · Zbl 1048.74046
[15] Zhao, C.; Hobbs, B. E.; Ord, A.; Hornby, P.; Peng, S.; Liu, L., Mineral precipitation associated with vertical fault zones: the interaction of solute advection, diffusion and chemical kinetics, Geofluids, 7, 3-18, (2007)
[16] Zhang, Y.; Hobbs, B. E.; Ord, A.; Barnicoat, A.; Zhao, C.; Lin, G., The influence of faulting on host-rock permeability, fluid flow and ore genesis of gold deposits: a theoretical 2D numerical model, J. Geochem. Explor., 78-79, 279-284, (2003)
[17] Zhao, C.; Hobbs, B. E.; Hornby, P.; Ord, A.; Peng, S.; Liu, L., Theoretical and numerical analyses of chemical-dissolution front instability in fluid-saturated porous rocks, Int. J. Numer. Anal. Methods Geomech., 32, 1107-1130, (2008) · Zbl 1273.74332
[18] Zhao, C.; Hobbs, B. E.; Ord, A., Theoretical analyses of nonaqueous-phase-liquid dissolution induced instability in two-dimensional fluid-saturated porous media, Int. J. Numer. Anal. Methods Geomech., 34, 1767-1796, (2010) · Zbl 1273.76108
[19] Chen, S. Y.; Doolen, G. D., Lattice Boltzmann method for fluid flows, Annu. Rev. Fluid Mech., 30, 329-364, (1998) · Zbl 1398.76180
[20] Succi, S., The lattice Boltzmann equation for fluid dynamics and beyond, (2001), Oxford University Press Oxford · Zbl 0990.76001
[21] Aidun, C. K.; Clausen, J. R., Lattice-Boltzmann method for complex flows, Annu. Rev. Fluid Mech., 42, 439-472, (2010) · Zbl 1345.76087
[22] Sukop, M. C.; Thorne, D. T., Lattice Boltzmann modeling: an introduction for geoscientists and engineers, (2007), Springer Berlin, Heidelberg, New York
[23] Tian, Z. W.; Zou, C.; Liu, Z. H.; Guo, Z. L.; Liu, H. J.; Zheng, C. G., Lattice Boltzmann method in simulation of thermal micro-flow with temperature jump, Internat. J. Modern Phys. C, 17, 603-614, (2006) · Zbl 1107.82368
[24] Tian, Z. W.; Zou, C.; Liu, H. J.; Guo, Z. L.; Liu, Z. H.; Zheng, C. G., Lattice Boltzmann scheme for simulating thermal micro-flow, Physica A, 385, 59-68, (2007)
[25] Tian, Z. W.; Chen, S.; Zheng, C. G., Lattice Boltzmann simulation of gaseous finite-Knudsen microflows, Internat. J. Modern Phys. C, 21, 769-783, (2010) · Zbl 1195.82056
[26] Chen, S.; Tian, Z. W., Simulation of microchannel flow using the lattice Boltzmann method, Physica A, 388, 4803-4810, (2009)
[27] Chen, S.; Tian, Z. W., Simulation of thermal micro-flow using lattice Boltzmann method with Langmuir slip model, Int. J. Heat Fluid Flow, 31, 227-235, (2010)
[28] Tian, Z. W.; Tan, Y. L.; Chen, S., A numerical study on premixed microcombustion by lattice Boltzmann method, Internat. J. Modern Phys. C, 23, 1250037, (2012), (13)
[29] Kang, Q.; Zhang, D.; Chen, S.; He, X., Lattice Boltzmann simulation of chemical dissolution in porous media, Phys. Rev. E, 65, 036318(8), (2002)
[30] Kang, Q.; Lichtner, P. C.; Zhang, D., Lattice Boltzmann pore-scale model for multicomponent reactive transport in porous media, J. Geophys. Res., 111, B05203(12), (2006)
[31] Kang, Q.; Lichtner, P. C.; Zhang, D., An improved lattice Boltzmann model for multicomponent reactive transport in porous media at the pore scale, Water Resour. Res., 43, W12S14(12), (2007)
[32] Kang, Q.; Lichtner, P. C.; Viswanathan, H. S.; Abdel-Fattah, A. I., Pore scale modeling of reactive transport involved in geologic CO_{2} sequestration, Transp. Porous Media, 82, 197-213, (2010)
[33] Guo, Z. L.; Zhao, T. S., Lattice Boltzmann model for incompressible flows through porous media, Phys. Rev. E, 66, 036304(9), (2002)
[34] Kang, Q.; Zhang, D.; Chen, S., Unified lattice Boltzmann method for flow in multiscale porous media, Phys. Rev. E, 66, 056307(11), (2002)
[35] Gao, J. F.; Xing, H. L., LBM simulation of fluid flow in fractured porous media with permeable matrix, Theor. Appl. Mech. Lett., 2, 032001(4), (2012)
[36] Gao, J. F.; Xing, H. L., High performance simulation of complicated fluid flow in 3D fractured porous media with permeable material matrix using LBM, (High Performance Computing for Computational Science, VECPAR 2012, LNCS, vol. 7851, (2013)), 93-104
[37] Gao, J. F.; Xing, H. L.; Tian, Z. W.; Muhlhaus, H., Lattice Boltzmann modeling and evaluation of fluid flow in heterogeneous porous media involving multiple matrix constituents, Comput. Geosci., 62, 198-207, (2014)
[38] Carman, P. C., Flow of gases through porous media, (1956), Academic San Diego, CA · Zbl 0073.43304
[39] Yin, S.; Dusseault, M. B.; Rothenburg, L., Coupled THMC modeling of CO_{2} injection by finite element methods, J. Pet. Sci. Eng., 80, 53-60, (2012)
[40] Plummer, L. N.; Parkhurst, D. L.; Wigley, T. M.L., The kinetics of calcite dissolution in CO_{2}-water systems at 5-60°C and 0.0-1.0 atm CO_{2}, Amer. J. Sci., 278, 176-216, (1978)
[41] Chou, L.; Garrels, R. M.; Wollast, R., Comparative study of the kinetics and mechanisms of dissolution of carbonate minerals, Chem. Geol., 78, 269-282, (1989)
[42] Pokrovsky, O. S.; Golubev, S. V.; Schott, J., Dissolution kinetics of calcite, dolomite and magnesite at 25°C and 0-50 atm \(p \operatorname{CO}_2\), Chem. Geol., 217, 239-255, (2005)
[43] Pokrovsky, O. S.; Golubev, S. V.; Schott, J.; Castillo, A., Calcite, dolomite and magnesite dissolution kinetics in aqueous solutions at acid to circumneutral ph, 25-150°C and 1-55 atm \(p \operatorname{CO}_2\): new constraints on CO_{2} sequestration in sedimentary basins, Chem. Geol., 265, 20-32, (2009)
[44] Parkhurst, D. L.; Appelo, C. A.J., User’s guide to PHREEQC(version 2)—a computer program for speciation, batchreaction, one-dimensional transport, and inverse geochemical calculations, US geological survey water-resources investigations report, 99-4259, (1999)
[45] Alt-Epping, P.; Zhao, C., Reactive mass transport modeling of a three-dimensional vertical fault zone with a finger-like convective flow regime, J. Geochem. Explor., 106, 8-23, (2010)
[46] Zhao, C.; Hobbs, B. E.; Ord, A.; Hornby, P.; Peng, S., Effct of reactive surface areas associated with diffrent particle shapes on chemical-dissolution front instability in fluid-saturated porous rocks, Transp. Porous Media, 73, 75-94, (2008)
[47] Zhao, C.; Hobbs, B. E.; Ord, A.; Peng, S., Effects of mineral dissolution ratios on chemical-dissolution front instability in fluid-saturated porous rocks, Transp. Porous Media, 82, 317-335, (2010)
[48] Zhao, C.; Hobbs, B. E.; Ord, A., Theoretical analyses of the effects of solute dispersion on chemical-dissolution front instability in fluid-saturated porous rocks, Transp. Porous Media, 84, 629-653, (2010)
[49] Zhao, C.; Hobbs, B. E.; Ord, A., Effects of medium permeability anisotropy on chemical-dissolution front instability in fluid-saturated porous rocks, Transp. Porous Media, 99, 119-143, (2013)
[50] Zhao, C.; Hobbs, B. E.; Ord, A., Effects of medium and pore-fluid compressibility on chemical-dissolution front instability in fluid-saturated porous media, Int. J. Numer. Anal. Methods Geomech., 10, 1002-1026, (2011)
[51] I. Gaus, C. Le Guern, J. Pearce, H. Pauwels, T. Shepherd, G. Hatziyannis, A. Metaxas, Comparison of long term geochemical interactions at two natural CO_{2}-analogues: Montmiral (Southeast basin, France) and Messokampos (Florina basin, Greece) case studies, in: Proceedings of the 7th International Conference on Greenhouse Gas Control Technologies, Cheltenham, UK, IEA Greenhouse Gas Program, 2004, pp. 561-569.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.