zbMATH — the first resource for mathematics

On free subgroups of generalized triangle groups. (English) Zbl 0694.20016
Algebra Logic 28, No. 2, 152-161 (1989); and Algebra Logika 28, No. 2, 227-240 (1989).
Let \(G=\langle a_ 1,...,a_ n\mid a_ 1^{e_ 1}=...a_ n^{e_ n}=R^ m(a_ 1,...,a_ n)=1\rangle\), where \(m,n\geq 2\), \(e_ i=0\) or \(e_ i\geq 2\) (\(1\leq i\leq n\)) and \(R(a_ 1,...,a_ n)\) is a cyclically reduced word in the free product on \(a_ 1,...,a_ n\) involving all \(a_ 1,...,a_ n\). In this paper the author is concerned with the question: does the Tits alternative hold for \(G\) (i.e. does \(G\) contain either a free subgroup of rank 2 or a solvable subgroup of finite index)?
In an earlier joint paper with B. Fine and F. Levin [Arch. Math. 50, 97-109 (1988; Zbl 0639.20016)] the author proved, for example, that the Tits alternative holds for \(G\) provided \(n\geq 3\) or (\(n=2\) and \(m\geq 3\)). In this paper he extends this result to the case where \(n=m=2\) and \(R(a,b)=a^{\alpha}b^{\beta}a^{\gamma}b^{\delta}\), with \(1\leq\alpha,\gamma<e_ 1\) and \(1\leq \beta,\delta<e_ 2\). The proofs involve representing \(G\) as a subgroup of \(\text{PSL}_ 2(\mathbb{C})\).
Reviewer: A.W.Mason

20E06 Free products of groups, free products with amalgamation, Higman-Neumann-Neumann extensions, and generalizations
20F05 Generators, relations, and presentations of groups
20E07 Subgroup theorems; subgroup growth
20H05 Unimodular groups, congruence subgroups (group-theoretic aspects)
Full Text: DOI EuDML
[1] G. Baumslag, J. Morgan, and P. Shalen, ”Generalized triangle groups,” Math. Proc. Camb. Phil. Soc.,102, 25–31 (1987). · Zbl 0626.20023
[2] M. D. E. Conder, ”Three-relator quotients of the modular group,” Q. J. Math. Oxford,38, 427–447 (1987). · Zbl 0628.20030
[3] H. S. M. Coxeter and W. O. J. Moser, ”Generators and relations for discrete groups,” Ergeb. Math. Grenzgebiette,14, Springer-Verlag, Berlin-Heidelberg-New York (1972). · Zbl 0239.20040
[4] B. Fine, J. Howie, and G. Rosenberger, ”One-relator quotients and free products of cyclics,” Proc. Am. Math. Soc.,102, 249–254 (1988). · Zbl 0653.20029
[5] B. Fine, F. Levin, and G. Rosenberger, ”Free subgroups and decompositions of one-relator products of cyclics; Part 1: The Tits alternative,” Arch. Math.,50, 97–109 (1988). · Zbl 0639.20016
[6] J. R. Ford, Automorphic Functions, Chelsea, New York (1951). · JFM 55.0810.04
[7] G. Kern-Isberner and G. Rosenberger, ”Über Diskretheitsbedingungen und die diophantische Gleichung ax2 + by2 + cz2 = dxyz,” Arch. Math.,34, 481–493 (1980). · Zbl 0432.20044
[8] F. Levin and G. Rosenberger, ”A class of SQ-universal groups,” Preprint, Dortmund Univ. (1987). · Zbl 0659.20025
[9] R. C. Lyndon and P. E. Schupp, Combinatorial Group Theory, Springer-Verlag, Berlin-Heidelberg-New York (1977). · Zbl 0368.20023
[10] A. Majeed and A. W. Mason, ”Solvable-by-finite subgroups of GL(2, F),” Glasgow Math. J.,19, 45–48 (1978). · Zbl 0372.20029
[11] Y. Moriah, ”Heegard splittings of Seifert fibered spaces,” Preprint, Vancouver Univ. (1987). · Zbl 0651.57012
[12] J. Tits, ”Free subgroups in linear groups,” J. Algebra,20, 250–270 (1972). · Zbl 0236.20032
[13] H. Zieschang, E. Vogt, and H.-D. Coldewey, ”Surfaces and planar discontinuous groups,” Lect. Notes in Math.,835, Springer-Verlag, Berlin-Heidelberg-New York (1980). · Zbl 0438.57001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.