×

Applications holomorphes propres continues de domaines strictement pseudoconvexes de \({\mathbb{C}}^ n\) dans la boule unité de \({\mathbb{C}}^{n+1}\). (On the extension of proper holomorphic mappings from strictly pseudoconvex domains in \({\mathbb{C}}^ n\) into the unit ball of \({\mathbb{C}}^{n+1})\). (French) Zbl 0694.32010

Etant donné, dans \({\mathbb{C}}^ n\), un domaine D borné strictement pseudoconvexe de bord \({\mathcal C}^{\infty}\), on construit des applications continues de \(\bar D\) dans la boule unité fermée de \({\mathbb{C}}^{n+1}\), et de la frontière de D dans celle de la boule, holomorphes sur D.
Reviewer: M.Hervé

MSC:

32T99 Pseudoconvex domains
32H35 Proper holomorphic mappings, finiteness theorems
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] H. Alexander, Proper holomorphic mappings in \(\mathbbC^n\) , Indiana Univ. Math. J. 26 (1977), no. 1, 137-146. · Zbl 0391.32015
[2] J. Chaumat and A.-M. Chollet, Ensembles pics pour \(A^\infty(D)\) , Ann. Inst. Fourier (Grenoble, France) 29 (1979), no. 3, 171-200. · Zbl 0398.32004
[3] J. Cima, S. G. Krantz, and T. Suffridge, A reflection principle for proper holomorphic mappings of strongly pseudoconvex domains and applications , Math. Z. 186 (1984), no. 1, 1-8. · Zbl 0518.32009
[4] J. Cima and T. Suffridge, A reflection principle with applications to proper holomorphic mappings , Math. Ann. 265 (1983), no. 4, 489-500. · Zbl 0525.32021
[5] A. Dor, Proper holomorphic maps from strongly pseudocovex domains in \(\mathbbC\) to the unit ball in \(\mathbbC\) and boundary interpolation by proper holomorphic maps , · JFM 63.1129.02
[6] J. Faran, Maps from the two-ball to the three-ball , Invent. Math. 68 (1982), no. 3, 441-475. · Zbl 0519.32016
[7] J. E. Fornaess and B. Stensønes, Lectures on counterexamples in several complex variables , Math. Notes, vol. 33, Princeton Univ. Press, Princeton, NJ, 1987. · Zbl 0626.32001
[8] F. Forstnerič, Embedding strictly pseudoconvex domains into balls , Trans. Amer. Math. Soc. 295 (1986), no. 1, 347-368. JSTOR: · Zbl 0594.32024
[9] J. Globevnik, Extensions and selections in subspaces of \(C(K)\) , Monatsh. Math. 90 (1980), no. 3, 195-205. · Zbl 0434.46031
[10] J. Globevnik, Boundary interpolation by proper holomorphic maps , Math. Z. 194 (1987), no. 3, 365-373. · Zbl 0611.32021
[11] M. Hakim and N. Sibony, Fonctions holomorphes bornées sur la boule unité de \( \mathbbC^n\) , Invent. Math. 67 (1982), no. 2, 213-222. · Zbl 0475.32007
[12] G. M. Henkin and A. E. Tumanov, Interpolation submanifolds of pseudoconvex manifolds , Mathematical programming and related questions (Proc. Seventh Winter School, Drogobych, 1974), Theory of functions and functional analysis (Russian), Central. Èkonom.-Mat. Inst. Akad. Nauk SSSR, Moscow, 1976, pp. 74-86. · Zbl 0455.32009
[13] E. Løw, Toppinterpolasjons-mengder i ramda til strengt pseudokonveksc omrader , Univ. of Oslo, 1979, Cand. real thesis.
[14] E. Løw, Embeddings and proper holomorphic maps of strictly pseudoconvex domains into polydiscs and balls , Math. Z. 190 (1985), no. 3, 401-410. · Zbl 0584.32048
[15] W. Rudin, Function theory in the unit ball of \(\mathbbC^n\) , Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science], vol. 241, Springer-Verlag, New York, 1980. · Zbl 0495.32001
[16] N. Sibony, Sur le plongement des domaines faiblement pseudoconvexes dans des domaines convexes , Math. Ann. 273 (1986), no. 2, 209-214. · Zbl 0573.32023
[17] B. Stensønes, Proper holomorphic mappings from strongly pseudoconvex domains in \(\mathbbC^n\) to the unit polydisc \(\mathbbC^n+1\) . · Zbl 0706.32010
[18] S. Webster, On mapping an \(n\)-ball into an \((n+1)\)-ball in complex spaces , Pacific J. Math. 81 (1979), no. 1, 267-272. · Zbl 0379.32018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.