Campana, F. On twistor spaces of the class \({\mathcal C}\). (English) Zbl 0694.32017 J. Differ. Geom. 33, No. 2, 541-549 (1991). A (very) special case of the main result of this paper is the simple connectedness of any Moishezon manifold Z containing a smooth rational curve C with ample normal bundle \(N_{C| Z}\). When Z is unirational, this is due to J. P. Serre. As an application, only \(S^ 4\) and connected sums of \({\mathbb{C}}{\mathbb{P}}_ 2's\) can have Moishezon twistor spaces. Recent examples of C. Lebruin and then H. Kurke show that this is sharp. Reviewer: F.Campana Cited in 3 ReviewsCited in 41 Documents MSC: 32L25 Twistor theory, double fibrations (complex-analytic aspects) 32J10 Algebraic dependence theorems Keywords:fundamental group; simple connectedness of any Moishezon manifold; twistor spaces PDF BibTeX XML Cite \textit{F. Campana}, J. Differ. Geom. 33, No. 2, 541--549 (1991; Zbl 0694.32017) Full Text: DOI OpenURL