Baranov, M. A.; Frolov, I. V.; Shvarts, A. S. Geometry of the superconformal moduli space. (English. Russian original) Zbl 0694.53060 Theor. Math. Phys. 79, No. 2, 509-517 (1989); translation from Teor. Mat. Fiz. 79, No. 2, 241-252 (1989). See the review in Zbl 0679.53058. Cited in 1 Document MSC: 53C55 Global differential geometry of Hermitian and Kählerian manifolds 53C80 Applications of global differential geometry to the sciences 58D05 Groups of diffeomorphisms and homeomorphisms as manifolds Keywords:moduli space; superconformal manifolds; Weil-Peterson metrics Citations:Zbl 0679.53058 × Cite Format Result Cite Review PDF Full Text: DOI References: [1] A. M. Polyakov, Phys. Lett. B,103, 207, 211 (1981). · doi:10.1016/0370-2693(81)90743-7 [2] O. Alvarez, Nucl. Phys. B,216, 125 (1983). · doi:10.1016/0550-3213(83)90490-X [3] M. A. Baranov and A. S. Shvarts, Pis’ma Zh. Eksp. Teor. Fiz.,42, 340 (1985). [4] M. A. Baranov, I. V. Frolov, and A. S. Shvarts, Teor. Mat. Fiz.,70, 92 (1987). [5] M. A. Baranov, Yu. I. Manin, I. V. Frolov, and A. S. Shvarts, Yad. Fiz.,43, 1053 (1986). [6] M. A. Baranov, Yu. I. Manin, I. V. Frolov, and A. S. Schwarz, Commun. Math. Phys.,111, 373 (1987). · Zbl 0624.58033 · doi:10.1007/BF01238904 [7] D. B. Fuks, Cohomologies of Infinite-Dimensional Lie Algebras [in Russian], Nauka, Moscow (1987). [8] H. Cartan and S. Eilenberg, Homological Algebra, Princeton University Press (1956). [9] G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, Princeton University Press. · Zbl 0872.11023 [10] W. M. Goldman, Adv. Math.,54, 200 (1984). · Zbl 0574.32032 · doi:10.1016/0001-8708(84)90040-9 [11] M. Atiyah and R. Bott, Philos. Trans. R. Soc. London, Ser. A,308, 523 (1982). [12] A. A. Voronov, A. A. Rosly, and A. S. Schwarz, Commun. Mat. Phys.,119, 129 (1988). · Zbl 0675.58010 · doi:10.1007/BF01218264 [13] P. Griffiths and J. Harris, Principles of Algebraic Geometry, Wiley, New York (1978). · Zbl 0408.14001 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.