Cahen, Benjamin Invariant symbolic calculus for semidirect products. (English) Zbl 1463.81016 Commentat. Math. Univ. Carol. 59, No. 2, 253-269 (2018). The interesting paper under review presents the construction of an invariant symbolic calculus for unitary irreducible representations of Lie groups of the form \(G=V\rtimes K\), where \(V\) is a finite-dimensional real vector space that is acted on by a connected noncompact semisimple Lie group \(K\). The focus is on unitary irreducible representations \(\pi\colon G\to\mathcal{B}(\mathcal{H})\) associated with coadjoint orbits \(\mathcal{O}\) of \(G\) whose corresponding so-called little groups are maximal compact subgroups of \(G\). In this framework, an invariant symbolic calculus is a one-to-one linear mapping \(\mathcal{S}\) from a vector space of linear operators on \(\mathcal{H}\) to a vector space of generalized functions on \(\mathcal{O}\) satisfying the conditions that \(\mathcal{S}(A^*)\) is the complex conjugate of \(\mathcal{S}(A)\) and \(\mathcal{S}(\pi(g)A\pi(g)^{-1})=\mathcal{S}(A)(g^{-1}x)\) for all operators \(A\) in the domain of definition of \(\mathcal{S}\) and all \(g\in G\) and \(x\in\mathcal{O}\). The general construction is illustrated by the examples of the Poincaré group and the tangent group of \(\mathrm{SU}(n,1)\). Reviewer: Daniel Beltiţă (Bucureşti) Cited in 1 Document MSC: 81S10 Geometry and quantization, symplectic methods 22E46 Semisimple Lie groups and their representations 22E45 Representations of Lie and linear algebraic groups over real fields: analytic methods 22D30 Induced representations for locally compact groups 81R05 Finite-dimensional groups and algebras motivated by physics and their representations Keywords:coadjoint orbit; unitary representation; Berezin quantization; Weyl quantization; Poincaré group; semidirect products; invariant symbolic calculus × Cite Format Result Cite Review PDF Full Text: DOI Link References: [1] Ali S. T.; Engliš M., Quantization methods: a guide for physicists and analysts, Rev. Math. Phys. 17 (2005), no. 4, 391-490 · Zbl 1075.81038 · doi:10.1142/S0129055X05002376 [2] Arazy J.; Upmeier H., Weyl calculus for complex and real symmetric domains, Harmonic Analysis on Complex Homogeneous Domains and Lie Groups (Rome, 2001). Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 13 (2002), no. 3-4, 165-181 · Zbl 1150.43302 [3] Arazy J.; Upmeier H., Invariant symbolic calculi and eigenvalues of invariant operators on symmeric domains, Function Spaces, Interpolation Theory and Related Topics (Lund, 2000), De Gruyter, Berlin, 2002, pp. 151-211 · Zbl 1027.32020 [4] Arnal D.; Cahen M.; Gutt S., Representation of compact Lie groups and quantization by deformation, Acad. Roy. Belg. Bull. Cl. Sci. (5) 74 (1988), no. 4-5, 123-141 · Zbl 0681.58016 [5] Arratia O.; Martín M. A.; del Olmo M. A., Deformation on phase space, RACSAM. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 96 (2002), no. 1, 63-81 · Zbl 1028.81033 [6] Berezin F. A., Quantization, Izv. Akad. Nauk SSSR Ser. Mat. 38 (1974), 1116-1175 (Russian) · Zbl 0976.83531 [7] Berezin F. A., Quantization in complex symmetric spaces, Izv. Akad. Nauk SSSR Ser. Mat. 39 (1975), no. 2, 363-402, 472 (Russian) · Zbl 0312.53050 [8] Brif C.; Mann A., Phase-space formulation of quantum mechanics and quantum-state reconstruction for physical systems with Lie-group symmetries, Phys. Rev. A (3) 59 (1999), no. 2, 971-987 · doi:10.1103/PhysRevA.59.971 [9] Cahen B., Quantification d’une orbite massive d’un groupe de Poincaré généralisé, C. R. Acad. Sci. Paris Sér. I Math. 325 (1997), no. 7, 803-806 (French. English. French summary) · Zbl 0883.22016 [10] Cahen B., Weyl quantization for semidirect products, Differential Geom. Appl. 25 (2007), no. 2, 177-190 · Zbl 1117.81087 · doi:10.1016/j.difgeo.2006.08.005 [11] Cahen B., Berezin quantization on generalized flag manifolds, Math. Scand. 105 (2009), no. 1, 66-84 · Zbl 1183.22006 · doi:10.7146/math.scand.a-15106 [12] Cahen B., Berezin quantization and holomorphic representations, Rend. Semin. Mat. Univ. Padova 129 (2013), 277-297 · Zbl 1272.22007 · doi:10.4171/RSMUP/129-16 [13] Cahen B., Global parametrization of scalar holomorphic coadjoint orbits of a quasi-Hermitian Lie group, Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math. 52 (2013), 35-48 · Zbl 1296.22007 [14] Cahen B., Stratonovich-Weyl correspondence for the real diamond group, Riv. Mat. Univ. Parma (N.S.) 4 (2013), no. 1, 197-213 · Zbl 1293.22003 [15] Cahen B., Berezin transform and Stratonovich-Weyl correspondence for the multi-dimensional Jacobi group, Rend. Semin. Mat. Univ. Padova 136 (2016), 69-93 · Zbl 1359.22010 · doi:10.4171/RSMUP/136-7 [16] Cariñena J. F.; Gracia-Bondía J. M.; Várilly J. C., Relativistic quantum kinematics in the Moyal representation, J. Phys. A 23 (1990), no. 6, 901-933 · Zbl 0706.60108 · doi:10.1088/0305-4470/23/6/015 [17] Folland B., Harmonic Analysis in Phase Space, Annals of Mathematics Studies, 122, Princeton University Press, Princeton, 1989 · Zbl 0682.43001 [18] Gracia-Bondía J. M., Generalized Moyal quantization on homogeneous symplectic spaces, Deformation Theory and Quantum Groups with Applications to Mathematical Physics (Amherst, MA, 1990), Contemp. Math., 134, Amer. Math. Soc., Providence, 1992, pp. 93-114 · Zbl 0788.58024 [19] Helgason S., Differential Geometry, Lie Groups and Symmetric Spaces, Graduate Studies in Mathematics, 34, American Mathematical Society, Providence, 2001 · Zbl 0993.53002 · doi:10.1090/gsm/034 [20] Hörmander L., The Analysis of Linear Partial Differential Operators. III. Pseudodifferential Operators, Grundlehren der Mathematischen Wissenschaften, 274, Springer, Berlin, 1985 · Zbl 0601.35001 [21] Kirillov A. A., Lectures on the Orbit Method, Graduate Studies in Mathematics, 64, American Mathematical Society, Providence, 2004 · Zbl 1229.22003 · doi:10.1090/gsm/064 [22] Kostant B., Quantization and unitary representations. I. Prequantization, Lectures in Modern Analysis and Applications, III, Lecture Notes in Math., 170, Springer, Berlin, 1970, pp. 87-208 · Zbl 0223.53028 [23] Landsman N. P., Mathematical Topics Between Classical and Quantum Mechanics, Springer Monographs in Mathematics, Springer, New York, 1998 · Zbl 0923.00008 [24] Rawnsley J. H., Representations of a semi-direct product by quantization, Math. Proc. Cambridge Philos. Soc. 78 (1975), no. 2, 345-350 · Zbl 0313.22014 · doi:10.1017/S0305004100051793 [25] Rawnsley J.; Cahen M.; Gutt S., Quantization on Kähler manifolds. I. Geometric interpretation of Berezin quantization, J. Geom. Phys. 7 (1990), 45-62 · Zbl 0719.53044 · doi:10.1016/0393-0440(90)90019-Y [26] Simms D. J., Lie Groups and Quantum Mechanics, Lecture Notes in Mathematics, 52, Springer, Berlin, 1968 · Zbl 0161.24002 · doi:10.1007/BFb0069914 [27] Stratonovich R. L., On distributions in representation space, Soviet Physics. JETP 4 (1957), 891-898 · Zbl 0082.19302 [28] Taylor M. E., Noncommutative Harmonic Analysis, Mathematical Surveys and Monographs, 22, American Mathematical Society, Providence, 1986 · Zbl 0604.43001 [29] Unterberger A.; Unterberger J., La série discrète de \(SL(2, {\mathbb R})\) et les opérateurs pseudo- différentiels sur une demi-droite, Ann. Sci. École Norm. Sup. (4) 17 (1984), no. 1, 83-116 (French) · Zbl 0549.35119 · doi:10.24033/asens.1467 [30] Várilly J. C.; Gracia-Bondía J. M., The Moyal representation for spin, Ann. Physics 190 (1989), no. 1, 107-148 · Zbl 0652.46028 · doi:10.1016/0003-4916(89)90262-5 [31] Voros A., An algebra of pseudodifferential operators and the asymptotics of quantum mechanics, J. Funct. Anal. 29 (1978), no. 1, 104-132 · Zbl 0386.47031 · doi:10.1016/0022-1236(78)90049-6 [32] Wallach N. R., Harmonic Analysis on Homogeneous Spaces, Pure and Applied Mathematics, 19, Marcel Dekker, New York, 1973 · Zbl 0265.22022 [33] Wildberger N. J., On the Fourier transform of a compact semi simple Lie group, J. Austral. Math. Soc. Ser. A 56 (1994), no. 1, 64-116 · Zbl 0842.22015 · doi:10.1017/S1446788700034741 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.