×

Quadratic Chabauty and rational points. I: \(p\)-adic heights. (English) Zbl 1401.14123

Let \(X\) be a smooth projective curve of genus \(g\geq 2\) defined over a number field \(K\). The \(p\)-adic method of Chabauty and Coleman gives an effective way of computing the finite set \(X(K)\), under some conditions, the main one being that the Mordell-Weil rank of the Jacobian be less than \(g\). Kim’s non abelian approach replaces the Jacobian by the Selmer variety [M. Kim, Invent. Math. 161, No. 3, 629–656 (2005; Zbl 1090.14006)]. In the paper under review, the authors introduce new techniques for studying Selmer varieties which enable them to produce new methods for determining the rational points of a variety over \({\mathbb{Q}}\) or over a quadratic field when the Mordell-Weil rank is equal to \(g\). The methods generalize those which were used for the study of integral points on hyperelliptic curves using \(p\)-adic heights in [J. S. Balakrishnan et al., J. Reine Angew. Math. 720, 51–79 (2016; Zbl 1350.11067)]. They also use the results of the PhD Thesis of the second author [Topics in the theory of Selmer varieties. Oxford: Oxford University (2015)]. A crucial role in the proof is played by Nekovář’s approach to the \(p\)-adic height pairing [J. Nekovář, Prog. Math. 108, 127–202 (1993; Zbl 0859.11038)]. As an example, the authors show how to compute explicitly a finite set containing the rational points over \({\mathbb{Q}}\) or over a quadratic number field for a genus \(2\) bielliptic curve of Mordell-Weil rank \(2\). The example of \(X_0(37)\) over \({\mathbb{Q}}(i)\) is given; in an appendix to this paper, Stephen Müller carries out the Mordell-Weil sieve computations.

MSC:

14G05 Rational points
11G50 Heights
14G40 Arithmetic varieties and schemes; Arakelov theory; heights

Software:

SageMath; GitHub; QCI
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] J. S. Balakrishnan and A. Besser, Computing local \(p\)-adic height pairings on hyperelliptic curves, Int. Math. Res. Not. IMRN 2012, no. 11, 2405–2444. · Zbl 1284.11097
[2] J. S. Balakrishnan and A. Besser, Coleman-Gross height pairings and the \(p\)-adic sigma function, J. Reine Angew. Math. 698 (2015), 89–104. · Zbl 1348.11091
[3] J. S. Balakrishnan, A. Besser, and J. S. Müller, Quadratic Chabauty: \(p\)-adic height pairings and integral points on hyperelliptic curves, J. Reine Angew. Math. 720 (2016), 51–79. · Zbl 1350.11067
[4] J. S. Balakrishnan, A. Besser, and J. S. Müller, Computing integral points on hyperelliptic curves using quadratic Chabauty, Math. Comp. 86 (2017), 1403–1434. · Zbl 1376.11053
[5] J. S. Balakrishnan, I. Dan-Cohen, M. Kim, and S. Wewers, A non-abelian conjecture of Tate-Shafarevich type for hyperbolic curves, to appear in Math Ann.
[6] J. S. Balakrishnan and N. Dogra, Sage code, September 2017, https://github.com/jbalakrishnan/QCI.
[7] J. S. Balakrishnan and N. Dogra, Quadratic Chabauty and rational points, I: \(p\)-adic heights, preprint, arXiv:1601.00388v2 [math.NT].
[8] J. S. Balakrishnan and N. Dogra, Quadratic Chabauty and rational points, II: Generalised height functions on Selmer varieties, preprint, arXiv:1705.00401v1 [math.NT].
[9] J. S. Balakrishnan, N. Dogra, J. S. Muller, J. Tuitman, and J. Vonk, Explicit Chabauty-Kim for the split Cartan modular curve of level 13, preprint, arXiv:1711.05846v1 [math.NT].
[10] A. Besser, “The \(p\)-adic height pairings of Coleman-Gross and of Nekovář,” in Number Theory, CRM Proc. Lecture Notes 36, Amer. Math. Soc., Providence, 2004, 13–25. · Zbl 1153.11316
[11] Y. Bilu and P. Parent, Serre’s uniformity problem in the split Cartan case, Ann. of Math. (2) 173 (2011), 569–584. · Zbl 1278.11065
[12] Y. Bilu, P. Parent, and M. Rebolledo, Rational points on \(x_{0}^{+}(p^{r})\), Ann. Inst. Fourier (Grenoble) 63 (2013), 957–984. · Zbl 1307.11075
[13] S. Bloch and K. Kato, “ \({L}\)-functions and Tamagawa numbers of motives,” in The Grothendieck Festschrift, Vol. I, Progr. Math. 86, Birkhäuser, Boston, 1990, 333–400. · Zbl 0768.14001
[14] N. Bruin and M. Stoll, The Mordell-Weil sieve: proving non-existence of rational points on curves, LMS J. Comput. Math. 13 (2010), 272–306. · Zbl 1278.11069
[15] C. Chabauty, Sur les points rationnels des courbes algébriques de genre supérieur à l’unité, C. R. Acad. Sci. Paris 212 (1941), 882–885. · Zbl 0025.24902
[16] J. Coates and M. Kim, Selmer varieties for curves with CM Jacobians, Kyoto J. Math. 50 (2010), 827–852. · Zbl 1283.11092
[17] R. F. Coleman, Effective Chabauty, Duke Math. J. 52 (1985), 765–770. · Zbl 0588.14015
[18] R. F. Coleman and B. H. Gross, “\(p\)-adic heights on curves,” in Algebraic Number Theory, Adv. Stud. Pure Math. 17, Academic Press, Boston, 1989, 73–81. · Zbl 0758.14009
[19] H. Darmon, V. Rotger, and I. Sols, “Iterated integrals, diagonal cycles and rational points on elliptic curves” in Publications mathématiques de Besançon: Algèbre et théorie des nombres, 2012/2, Publ. Math. Besançon Algèbre Théorie Nr. 2012, Presses Univ. Franche-Comté, Besançon, 2012, 19–46. · Zbl 1332.11054
[20] P. Deligne, “Le groupe fondamental de la droite projective moins trois points,” in Galois Groups over \(\mathbb{Q}\) (Berkeley, CA, 1987), Math. Sci. Res. Inst. Publ. 16, Springer, New York, 1989, 79–297.
[21] P. Deligne and A. B. Goncharov, Groupes fondamentaux motiviques de Tate mixte, Ann. Sci. Éc. Norm. Supér. (4) 38 (2005), 1–56. · Zbl 1084.14024
[22] N. Dogra, Topics in the theory of Selmer varieties, Ph.D. dissertation, Oxford University, Oxford, 2015.
[23] J. S. Ellenberg and D. R. Hast, Rational points on solvable curves over \(\mathbb{Q}\) via non-abelian Chabauty, preprint, arXiv:1706.00525v2 [math.NT].
[24] G. Faltings, Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math. 73 (1983), 349–366.
[25] E. V. Flynn and J. L. Wetherell, Finding rational points on bielliptic genus 2 curves, Manuscripta Math. 100 (1999), 519–533. · Zbl 1029.11024
[26] J.-M. Fontaine and B. Perrin-Riou, “Autour des conjectures de Bloch et Kato: cohomologie Galoisienne et valeurs de fonctions \(L\),” in Motives (Seattle, WA, 1991), Proc. Sympos. Pure Math 55, Amer. Math. Soc., Providence, 1994, 599–706.
[27] W. Fulton, Intersection Theory, 2nd ed., Ergeb. Math. Grenzgeb. (3) 2, Springer, Berlin, 2013. · Zbl 0541.14005
[28] A. Grothendieck, P. Deligne, and N. Katz, Groupes de monodromie en géométrie algébrique, I, Séminaire de Géométrie Algébrique du Bois-Marie 1967–1969 (SGA 7 I), Lecture Notes in Math. 288, Springer, New York, 1972; II, SGA 7 II, 340, 1973.
[29] R. H. Kaenders, The mixed Hodge structure on the fundamental group of a punctured Riemann surface, Proc. Amer. Math. Soc. 129 (2001), 1271–1281. · Zbl 0971.14027
[30] M. Kim, The motivic fundamental group of \(\mathbf{P}^{1}⧵\{0,1,∞\}\) and the theorem of Siegel, Invent. Math. 161 (2005), 629–656. · Zbl 1090.14006
[31] M. Kim, The unipotent Albanese map and Selmer varieties for curves, Publ. Res. Inst. Math. Sci. 45 (2009), 89–133. · Zbl 1165.14020
[32] M. Kim, Tangential localization for Selmer varieties, Duke Math. J. 161 (2012), 173–199. · Zbl 1268.11079
[33] M. Kim and A. Tamagawa, The \(l\)-component of the unipotent Albanese map, Math. Ann. 340 (2008), 223–235. · Zbl 1126.14035
[34] B. Mazur, W. Stein, and J. Tate, Computation of \(p\)-adic heights and log convergence, Doc. Math. Extra Vol. (2006), 577–614. · Zbl 1135.11034
[35] J. Nekovář, “On \(p\)-adic height pairings,” in Séminaire de Théorie des Nombres, Paris, 1990–91, Progr. Math. 108, Birkhäuser, Boston, 1993, 127–202.
[36] M. C. Olsson, Towards non-abelian \(p\)-adic Hodge theory in the good reduction case, Mem. Amer. Math. Soc. 210 (2011), no. 990. · Zbl 1213.14002
[37] B. Poonen, E. F. Schaefer, and M. Stoll, Twists of \(X(7)\) and primitive solutions to \(x^{2}+y^{3}=z^{7}\), Duke Math. J. 137 (2007), 103–158. · Zbl 1124.11019
[38] M. Raynaud, “\(1\)-motifs et monodromie géométrique,” in Périodes \(p\)-adiques (Bures-sur-Yvette, 1988), Astérisque 223, Soc. Math. France, Montrouge, 1994, 295–319.
[39] V. Scharaschkin, Local-global problems and the Brauer-Manin obstruction, Ph.D. dissertation, University of Michigan, Ann Arbor, 1999. · Zbl 0938.11053
[40] A. J. Scholl, “Height pairings and special values of \(L\)-functions,” in Motives (Seattle, WA, 1991), Proc. Sympos. Pure Math. 55, Amer. Math. Soc., Providence, 1994, 571–598. · Zbl 0817.14008
[41] J.-P. Serre, Galois Cohomology, Springer, Berlin, 1997.
[42] S. Siksek, Explicit Chabauty over number fields, Algebra Number Theory 7 (2013), 765–793. · Zbl 1330.11043
[43] J. H. Silverman, Computing heights on elliptic curves, Math. Comp. 51 (1988), 339–358. · Zbl 0656.14016
[44] The Sage Developers, Sagemath, the Sage Mathematics Software System (Version 8.0), 2017, http://www.sagemath.org.
[45] M. Waldschmidt, On the \(p\)-adic closure of a subgroup of rational points on an Abelian variety, Afr. Mat. 22 (2011), 79–89. · Zbl 1291.11104
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.