×

On a Galois group arising from an iterated map. (English) Zbl 1418.11146

Summary: We study the irreducibility and the Galois group of the polynomial \(f(a,x)=x^{8}+3ax^{6}+3a^{2}x^{4}+(a^{2}+1)ax^{2}+a^{2}+1\) over \(\mathbb{Q}(a)\) and \(\mathbb{Q}\). This polynomial is a factor of the 4-th dynatomic polynomial for the map \(\sigma(x)=x^{3}+ax\).

MSC:

11R32 Galois theory
12F10 Separable extensions, Galois theory
12F20 Transcendental field extensions

Software:

Magma
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] W. Bosma, J. Cannon and C. Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), no. 3–4, 235–265. · Zbl 0898.68039
[2] N. Bruin and M. Stoll, The Mordell-Weil sieve: proving non-existence of rational points on curves, LMS J. Comput. Math. 13 (2010), 272–306. · Zbl 1278.11069
[3] T. Estermann, Einige Sätze über quadratfreie Zahlen, Math. Ann. 105 (1931), no. 1, 653–662. · Zbl 0003.15001
[4] P. Morton, Arithmetic properties of periodic points of quadratic maps, Acta Arith. 62 (1992), no. 4, 343–372. · Zbl 0767.11016
[5] P. Morton, Characterizing cyclic cubic extensions by automorphism polynomials, J. Number Theory 49 (1994), no. 2, 183–208. · Zbl 0810.12003
[6] P. Morton, Arithmetic properties of periodic points of quadratic maps. II, Acta Arith. 87 (1998), no. 2, 89–102. · Zbl 1029.12002
[7] P. Morton and P. Patel, The Galois theory of periodic points of polynomial maps, Proc. London Math. Soc. (3) 68 (1994), no. 2, 225–263. · Zbl 0792.11043
[8] J. H. Silverman, The arithmetic of dynamical systems, Graduate Texts in Mathematics, 241, Springer, New York, 2007. · Zbl 1130.37001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.