# zbMATH — the first resource for mathematics

Revisiting Kneser’s theorem for field extensions. (English) Zbl 1413.11115
For non-empty finite subsets $$S$$ and $$T$$ of an abelian group $$G$$, define the sumset $$S+T$$ by $$\{s+t\; :\; s\in S, \; t\in T\}$$. Then, by the classical result of M. Kneser [Math. Z 66, 88–110 (1956; Zbl 0073.01702)], $$| S+T| \geq| S| +| T| -1$$ or there exists a subgroup $$H\neq \{0\}$$ of $$G$$ such that $$S+T+H=S+T$$. X.-D. Hou, K. H. Leung, and Q. Xiang [J. Number Theory 97, 1–9 (2002; Zbl 1034.11020)] generalized Kneser’s theorem to field extensions in the following form. Let $$F$$ be a field, $$L/F$$ a field extension, and let $$S$$ and $$T$$ be finite dimensional subspaces of $$L$$ over $$F$$. Denote by $$ST$$ the $$F$$-linear span of the set of products $$st, \; s\in S, \; t\in T$$. Suppose that every algebraic element in $$L$$ is separable over $$F$$. Then $$\dim ST \geq \dim S + \dim T - 1$$ or there exists a subfield $$K$$, $$F \subsetneq K \subset L$$, such that $$STK=ST$$. X.-D. Hou [Linear Algebra Appl. 426, 214–227 (2007; Zbl 1132.12003)] conjectured that the above assertion holds without the separability assumption.
In the paper under review the authors prove Hou’s conjecture by giving an alternative proof without the separability assumption, moreover, with $$K$$ depending only on one of the factors. The result is a transposition to the extension field setting of a theorem of É. Balandraud [Ann. Inst. Fourier 58, 915–943 (2008; Zbl 1143.11039)].

##### MSC:
 11P70 Inverse problems of additive number theory, including sumsets 11T99 Finite fields and commutative rings (number-theoretic aspects) 12F99 Field extensions
##### Keywords:
Kneser’s theorem; field extensions
Full Text:
##### References:
 [1] C. Bachoc, O. Serra and G. Zémor: An analogue of Vosper’s Theorem for extension fields, Math. Proc. Cambridge Philos. Soc., to appear. · Zbl 1405.11134 [2] E. Balandraud: Une Variante de la méthode isoperimétrique de Hamidoune apliquée au théorème de · Zbl 1143.11039 · doi:10.5802/aif.2374 [3] V. Beck and C. Lecouvey: Additive combinatorics methods in associative algebras, preprint (2015) arXiv:1504.02287. · Zbl 1426.11120 [4] N. Bourbaki: Éléments de mathématique, Livre II, Algèbre, Hermann, 1959. [5] J. A. Dias da Silva and Y. O. Hamidoune: Cyclic spaces for Grassmann derivatives and additive the · Zbl 0819.11007 · doi:10.1112/blms/26.2.140 [6] S. Eliahou and C. Lecouvey: On linear versions of some additive theorem · Zbl 1263.11015 · doi:10.1080/03081080802018083 [7] In memory of Yahya Ould Hamidoune, special issue of European Journal of Combinatorics, Plagne, Serra and Zémor Eds., Vol. 34, 2013. [8] X. Hou: On a vector space analogue of Kneser’s theor · Zbl 1132.12003 · doi:10.1016/j.laa.2007.04.019 [9] X. Hou, K. H. Leung and Q. Xiang: A generalization of an addition theorem of · Zbl 1034.11020 · doi:10.1006/jnth.2002.2793 [10] Gy. Károlyi: The Erdos-Heilbronn problem in Abeli · Zbl 1082.11015 · doi:10.1007/BF02787556 [11] J. H. B. Kemperman: On complexes in a semigroup, Indagationes Ma · doi:10.1016/S1385-7258(56)50032-7 [12] M. Kneser: Summenmengen in lokalkompakten abe · Zbl 0073.01702 · doi:10.1007/BF01186598 [13] S. Lang, Algebra, Springer, 3rd Edition, (2005). [14] C. Lecouvey: Plünnecke and Kneser type theorems for dimension · Zbl 1324.05196 · doi:10.1007/s00493-014-2874-0 [15] M. B. Nathanson: Additive Number Theory. Inverse problems and the geometry of sumsets, Grad. Texts in Math. 165, Springer, 1996. [16] J. E. Olson: On the sum of two sets in a · Zbl 0524.10043 · doi:10.1016/0022-314X(84)90047-7 [17] A. Plagne, O. Serra and G. Zémor: Yahya Ould Hamidoune’s mathematical journey: A critical review of his work, European · Zbl 1292.05002 · doi:10.1016/j.ejc.2013.05.005 [18] I. Z. Ruzsa: An application of graph theory to additive number theory, Scientia. Series [19] T. Tao and V. Vu, Additive Combinatorics, Cambridge University Press, 2006.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.