×

On the scaling limits of weakly asymmetric bridges. (English) Zbl 1409.60145

Summary: We consider a discrete bridge from \((0,0)\) to \((2N,0)\) evolving according to the corner growth dynamics, where the jump rates are subject to an upward asymmetry of order \(N^{-\alpha}\) with \(\alpha\in(0,\infty)\). We provide a classification of the asymptotic behaviours – invariant measure, hydrodynamic limit and fluctuations – of this model according to the value of the parameter \(\alpha\).

MSC:

60K35 Interacting random processes; statistical mechanics type models; percolation theory
60H15 Stochastic partial differential equations (aspects of stochastic analysis)
82C24 Interface problems; diffusion-limited aggregation in time-dependent statistical mechanics

References:

[1] Amir, G., Corwin, I., and Quastel, J. (2011). Probability distribution of the free energy of the continuum directed random polymer in \(1+1\) dimensions. Comm. Pure Appl. Math.64, 4, 466–537. · Zbl 1222.82070 · doi:10.1002/cpa.20347
[2] Bahadoran, C. (2012). Hydrodynamics and hydrostatics for a class of asymmetric particle systems with open boundaries. Comm. Math. Phys.310, 1, 1–24. · Zbl 1247.82038 · doi:10.1007/s00220-011-1395-6
[3] Bardos, C., le Roux, A. Y., and Nédélec, J.-C. (1979). First order quasilinear equations with boundary conditions. Comm. Partial Differential Equations4, 9, 1017–1034. · Zbl 0418.35024 · doi:10.1080/03605307908820117
[4] Bertini, L. and Giacomin, G. (1997). Stochastic Burgers and KPZ equations from particle systems. Comm. Math. Phys.183, 3, 571–607. · Zbl 0874.60059 · doi:10.1007/s002200050044
[5] Billingsley, P. (1999). Convergence of probability measures, Second ed. Wiley Series in Probability and Statistics: Probability and Statistics. John Wiley & Sons, Inc., New York. A Wiley-Interscience Publication. · Zbl 0944.60003
[6] Bürger, R., Frid, H., and Karlsen, K. H. (2007). On the well-posedness of entropy solutions to conservation laws with a zero-flux boundary condition. J. Math. Anal. Appl.326, 1, 108–120. · Zbl 1160.35048 · doi:10.1016/j.jmaa.2006.02.072
[7] Corwin, I. (2012). The Kardar-Parisi-Zhang equation and universality class. Random Matrices Theory Appl.1, 1, 1130001, 76. · Zbl 1247.82040 · doi:10.1142/S2010326311300014
[8] Corwin, I., Shen, H., and Tsai, L.-C. (2018). \(\text{ASEP}(q,j)\) converges to the KPZ equation. Ann. Inst. Henri Poincaré Probab. Stat.54, 2, 995–1012. · Zbl 1391.60155
[9] Corwin, I. and Tsai, L.-C. (2017). KPZ equation limit of higher-spin exclusion processes. Ann. Probab.45, 3, 1771–1798. · Zbl 1407.60120 · doi:10.1214/16-AOP1101
[10] Da Prato, G. and Zabczyk, J. (1992). Stochastic equations in infinite dimensions. Encyclopedia of Mathematics and its Applications, Vol. 44. Cambridge University Press, Cambridge. · Zbl 0761.60052
[11] De Masi, A., Presutti, E., and Scacciatelli, E. (1989). The weakly asymmetric simple exclusion process. Ann. Inst. H. Poincaré Probab. Statist.25, 1, 1–38. · Zbl 0664.60110
[12] Dembo, A. and Tsai, L.-C. (2016). Weakly Asymmetric Non-Simple Exclusion Process and the Kardar–Parisi–Zhang Equation. Comm. Math. Phys.341, 1, 219–261. · Zbl 1342.82094 · doi:10.1007/s00220-015-2527-1
[13] Derrida, B., Enaud, C., Landim, C., and Olla, S. (2005). Fluctuations in the weakly asymmetric exclusion process with open boundary conditions. J. Stat. Phys.118, 5–6, 795–811. · Zbl 1073.82029 · doi:10.1007/s10955-004-1989-x
[14] Dittrich, P. and Gärtner, J. (1991). A central limit theorem for the weakly asymmetric simple exclusion process. Math. Nachr.151, 75–93. · Zbl 0732.60112
[15] Dobrushin, R. and Hryniv, O. (1996). Fluctuations of shapes of large areas under paths of random walks. Probab. Theory Related Fields105, 4, 423–458. · Zbl 0853.60057 · doi:10.1007/BF01191908
[16] Enaud, C. and Derrida, B. (2004). Large deviation functional of the weakly asymmetric exclusion process. J. Statist. Phys.114, 3–4, 537–562. · Zbl 1061.82020 · doi:10.1023/B:JOSS.0000012501.43746.cf
[17] Etheridge, A. M. and Labbé, C. (2015). Scaling limits of weakly asymmetric interfaces. Comm. Math. Phys.336, 1, 287–336. · Zbl 1315.82017 · doi:10.1007/s00220-014-2243-2
[18] Funaki, T. and Sasada, M. (2010). Hydrodynamic limit for an evolutional model of two-dimensional Young diagrams. Comm. Math. Phys.299, 2, 335–363. · Zbl 1204.82005 · doi:10.1007/s00220-010-1082-z
[19] Gärtner, J. (1988). Convergence towards Burgers’ equation and propagation of chaos for weakly asymmetric exclusion processes. Stochastic Process. Appl.27, 2, 233–260. · Zbl 0643.60094
[20] Gonçalves, P. and Jara, M. (2014). Nonlinear fluctuations of weakly asymmetric interacting particle systems. Arch. Ration. Mech. Anal.212, 2, 597–644. · Zbl 1293.35336 · doi:10.1007/s00205-013-0693-x
[21] Gubinelli, M. and Perkowski, N. (2018). Energy solutions of KPZ are unique. J. Amer. Math. Soc.31, 2, 427–471. · Zbl 1402.60077 · doi:10.1090/jams/889
[22] Hairer, M. (2013). Solving the KPZ equation. Annals of Mathematics178, 2 (June), 559–664. · Zbl 1281.60060 · doi:10.4007/annals.2013.178.2.4
[23] Hairer, M. (2014). A theory of regularity structures. Invent. Math.198, 2, 269–504. · Zbl 1332.60093 · doi:10.1007/s00222-014-0505-4
[24] Haraux, A. (1981). Nonlinear evolution equations—global behavior of solutions. Lecture Notes in Mathematics, Vol. 841. Springer-Verlag, Berlin-New York. · Zbl 0461.35002
[25] Janowsky, S. A. and Lebowitz, J. L. (1994). Exact results for the asymmetric simple exclusion process with a blockage. J. Statist. Phys.77, 1–2, 35–51. · Zbl 0838.60088 · doi:10.1007/BF02186831
[26] Kardar, M., Parisi, G., and Zhang, Y.-C. (1986). Dynamical scaling of growing interfaces. Phys. Rev. Lett.56, 889–892. · Zbl 1101.82329 · doi:10.1103/PhysRevLett.56.889
[27] Kipnis, C. and Landim, C. (1999). Scaling limits of interacting particle systems. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Vol. 320. Springer-Verlag, Berlin. · Zbl 0927.60002
[28] Kipnis, C., Olla, S., and Varadhan, S. R. S. (1989). Hydrodynamics and large deviation for simple exclusion processes. Comm. Pure Appl. Math.42, 2, 115–137. · Zbl 0644.76001 · doi:10.1002/cpa.3160420202
[29] Labbé, C. (2017). Weakly asymmetric bridges and the KPZ equation. Comm. Math. Phys.353, 3, 1261–1298. · Zbl 1368.60102 · doi:10.1007/s00220-017-2875-0
[30] Lenglart, E., Lépingle, D., and Pratelli, M. (1980). Présentation unifiée de certaines inégalités de la théorie des martingales. In Seminar on Probability, XIV (Paris, 1978/1979) (French). Lecture Notes in Math., Vol. 784. Springer, Berlin, 26–52. With an appendix by Lenglart. · Zbl 0427.60042
[31] Málek, J., Nečas, J., Rokyta, M., and Ružička, M. (1996). Weak and measure-valued solutions to evolutionary PDEs. Applied Mathematics and Mathematical Computation, Vol. 13. Chapman & Hall, London. · Zbl 0851.35002
[32] Mueller, C. (1991). On the support of solutions to the heat equation with noise. Stochastics Stochastics Rep.37, 4, 225–245. · Zbl 0749.60057 · doi:10.1080/17442509108833738
[33] Otto, F. (1996). Initial-boundary value problem for a scalar conservation law. C. R. Acad. Sci. Paris Sér. I Math.322, 8, 729–734. · Zbl 0852.35013
[34] Petrov, V. V. (1975). Sums of independent random variables. Springer-Verlag, New York-Heidelberg. Translated from the Russian by A. A. Brown, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 82. · Zbl 0322.60043
[35] Quastel, J. (2012). Introduction to KPZ. In Current developments in mathematics, 2011. Int. Press, Somerville, MA, 125–194. · Zbl 1316.60019
[36] Rezakhanlou, F. (1991). Hydrodynamic limit for attractive particle systems on \(\mathbf{Z}^{d}\). Comm. Math. Phys.140, 3, 417–448. · Zbl 0738.60098 · doi:10.1007/BF02099130
[37] Rudin, W. (1966). Real and complex analysis. McGraw-Hill Book Co., New York-Toronto, Ont.-London. · Zbl 0142.01701
[38] Spohn, H. (2017). The Kardar-Parisi-Zhang equation: a statistical physics perspective. In Stochastic processes and random matrices. Oxford Univ. Press, Oxford, 177–227. · Zbl 1403.35295
[39] Triebel, H. (1978). Interpolation theory, function spaces, differential operators. North-Holland Mathematical Library, Vol. 18. North-Holland Publishing Co., Amsterdam-New York. · Zbl 0387.46032
[40] Vovelle, J. (2002). Convergence of finite volume monotone schemes for scalar conservation laws on bounded domains. Numer. Math.90, 3, 563–596. · Zbl 1007.65066 · doi:10.1007/s002110100307
[41] Walsh, J.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.