zbMATH — the first resource for mathematics

Optimal monotonicity-preserving perturbations of a given Runge-Kutta method. (English) Zbl 1397.65103
Summary: Perturbed Runge-Kutta methods (also referred to as downwind Runge-Kutta methods) can guarantee monotonicity preservation under larger step sizes relative to their traditional Runge-Kutta counterparts. In this paper we study the question of how to optimally perturb a given method in order to increase the radius of absolute monotonicity (a.m.). We prove that for methods with zero radius of a.m., it is always possible to give a perturbation with positive radius. We first study methods for linear problems and then methods for nonlinear problems. In each case, we prove upper bounds on the radius of a.m., and provide algorithms to compute optimal perturbations. We also provide optimal perturbations for many known methods.
65L06 Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations
65L20 Stability and convergence of numerical methods for ordinary differential equations
65M20 Method of lines for initial value and initial-boundary value problems involving PDEs
Full Text: DOI
[1] Bogacki, P; Shampine, LF, An efficient Runge-Kutta (4, 5) pair, Comput. Math. Appl., 32, 15-28, (1996) · Zbl 0857.65077
[2] Calvo, M; Montijano, JI; Rández, L, A new embedded pair of Runge-Kutta formulas of orders 5 and 6, Comput. Math. Appl., 20, 15-24, (1990) · Zbl 0712.65070
[3] Conde, S; Gottlieb, S; Grant, ZJ; Shadid, JN, Implicit and implicit-explicit strong stability preserving Runge-Kutta methods with high linear order, J. Sci. Comput., 73, 667-690, (2017) · Zbl 1381.65052
[4] Donat, R; Higueras, I; Martínez-Gavara, A, On stability issues for IMEX schemes applied to hyperbolic equations with stiff reaction terms, Math. Comput., 80, 2097-2126, (2011) · Zbl 1246.35130
[5] Dormand, JR; Prince, PJ, A family of embedded Runge-Kutta formulae, J. Comput. Appl. Math., 6, 19-26, (1980) · Zbl 0448.65045
[6] Fehlberg, E, Klassische Runge-Kutta-formeln fünfter und siebenter ordnung mit schrittweiten-kontrolle, Computing, 4, 93-106, (1969) · Zbl 0185.41302
[7] Ferracina, L; Spijker, MN, Stepsize restrictions for the total-variation-diminishing property in general Runge-Kutta methods, SIAM J. Numer. Anal., 42, 1073-1093, (2004) · Zbl 1080.65087
[8] Gottlieb, S., Ketcheson, D.I., Shu, C.W.: Strong Stability Preserving Runge-Kutta and Multistep Time Discretizations. World Scientific Publishing Company, Singapore (2011) · Zbl 1241.65064
[9] Gottlieb, S; Ruuth, SJ, Optimal strong-stability-preserving time-stepping schemes with fast downwind spatial discretizations, J. Sci. Comput., 27, 289-303, (2006) · Zbl 1115.65092
[10] Gottlieb, S; Shu, CW, Total variation diminishing Runge-Kutta schemes, Math. Comput., 67, 73-85, (1998) · Zbl 0897.65058
[11] Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II. Springer, Berlin (1991) · Zbl 0729.65051
[12] Heun, K, Neue methoden zur approximativen integration der differentialgleichungen einer unabhängigen veränderlichen, Z. Math. Phys., 45, 23-38, (1900) · JFM 31.0333.02
[13] Higueras, I, Representations of Runge-Kutta methods and strong stability preserving methods, SIAM J. Numer. Anal., 43, 924-948, (2005) · Zbl 1097.65078
[14] Higueras, I, Strong stability for additive Runge-Kutta methods, SIAM J. Numer. Anal., 44, 1735-1758, (2006) · Zbl 1126.65067
[15] Higueras, I, Positivity properties for the classical fourth order Runge-Kutta methods, Monografías de la Real Academia de Ciencias de Zaragoza, 33, 125-139, (2010)
[16] Higueras, I., Ketcheson, D.I.: Reproducibility repository for computations of optimal perturbations to Runge-Kutta methods, version 0.2 (2016). https://doi.org/10.5281/zenodo.1146916
[17] Horváth, Z, On the positivity step size threshold of Runge-Kutta methods, Appl. Numer. Math., 53, 341-356, (2005) · Zbl 1073.65077
[18] Hundsdorfer, W; Koren, B; Loon, M; Verwer, JC, A positive finite-difference advection scheme, J. Comput. Phys., 117, 35-46, (1995) · Zbl 0860.65073
[19] Ketcheson, DI, Highly efficient strong stability preserving Runge-Kutta methods with low-storage implementations, SIAM J. Sci. Comput., 30, 2113-2136, (2008) · Zbl 1168.65382
[20] Ketcheson, DI, Computation of optimal monotonicity preserving general linear methods, Math. Comput., 78, 1497-1513, (2009) · Zbl 1198.65117
[21] Ketcheson, D.I.: High Order Strong Stability Preserving Time Integrators and Numerical Wave Propagation Methods for Hyperbolic PDEs. Doctoral thesis, University of Washington (2009)
[22] Ketcheson, DI, Step sizes for strong stability preservation with downwind-biased operators, SIAM J. Numer. Anal., 49, 1649-1660, (2011) · Zbl 1229.65136
[23] Ketcheson, D.I.: Nodepy software version 0.6.1 (2015). Available from http://github.com/ketch/nodepy
[24] Kraaijevanger, JFBM, Contractivity of Runge-Kutta methods, BIT, 31, 482-528, (1991) · Zbl 0763.65059
[25] LeVeque, RJ; Yee, HC, A study of numerical methods for hyperbolic conservation laws with stiff source terms, J. Comput. Phys., 210, 187-210, (1990) · Zbl 0682.76053
[26] Merson, R.H.: An operational method for the study of integration processes. In: Proceedings of the Symposium on Data Processing, pp. 1-25 (1957)
[27] Prince, PJ; Dormand, JR, High order embedded Runge-Kutta formulae, J. Comput. Appl. Math., 7, 67-75, (1981) · Zbl 0449.65048
[28] Ruuth, SJ, Global optimization of explicit strong-stability-preserving Runge-Kutta methods, Math. Comput., 75, 183-207, (2006) · Zbl 1080.65088
[29] Ruuth, SJ; Spiteri, RJ, High-order strong-stability-preserving Runge-Kutta methods with downwind-biased spatial discretizations, SIAM J. Numer. Anal., 42, 974-996, (2004) · Zbl 1089.65069
[30] Shu, CW; Osher, S, Efficient implementation of essentially non-oscillatory shock-capturing schemes, J. Comput. Phys., 77, 439-471, (1988) · Zbl 0653.65072
[31] Zhang, X; Shu, CW, On maximum-principle-satisfying high order schemes for scalar conservation laws, J. Comput. Phys., 229, 3091-3120, (2010) · Zbl 1187.65096
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.