zbMATH — the first resource for mathematics

The application of real convolution for analytically evaluating Fermi-Dirac-type and Bose-Einstein-type integrals. (English) Zbl 1400.44006
Summary: The Fermi-Dirac-type or Bose-Einstein-type integrals can be transformed into two convergent real-convolution integrals. The transformation simplifies the integration process and may ultimately produce a complete analytical solution without recourse to any mathematical approximations. The real-convolution integrals can either be directly integrated or be transformed into the Laplace transform inversion integral in which case the full power of contour integration becomes available. Which method is employed is dependent upon the complexity of the real-convolution integral. A number of examples are introduced which will illustrate the efficacy of the analytical approach.
MSC:
 44A35 Convolution as an integral transform
Software:
Algorithm 745; Fermi-Dirac
Full Text:
References:
 [1] Selvaggi, J. A.; Selvaggi, J. P., The analytical evaluation of the half-order Fermi-Dirac integrals, Open Mathematics Journal, 5, 1-7, (2012) [2] Blakemore, J. S., Approximations for Fermi-Dirac integrals, especially the function F_1/2(η) used to describe electron density in a semiconductor, Solid-State Electronics, 25, 11, 1067-1076, (1982) [3] Dingle, R. B., The fermi-dirac integrals $$\mathfrak{I}_p \left(\eta\right) = \left(p!\right)^{- 1} \int_0^{\operatorname{\infty}} \varepsilon^p \left(e^{\varepsilon - \eta} + 1\right)^{- 1} d \varepsilon$$, Applied Scientific Research, 6, 1, 225-239, (1957) · Zbl 0077.23704 [4] McDougall, J.; Stoner, E. C., The Computation of Fermi-Dirac Functions, Philosophical Transactions of the Royal Society A: Mathematical, Physical & Engineering Sciences, 237, 773, 67-104, (1938) · Zbl 0018.16201 [5] Clunie, J., On Bose-Einstein functions, Proceedings of the Physical Society. Section A, 67, 7, article no. 308, 632-636, (1954) · Zbl 0055.36003 [6] Dingle, R. B., The Bose-Einstein integrals $$\mathfrak{B}_p \left(\eta\right) = \left(p!\right)^{- 1} \int_0^{\operatorname{\infty}} \varepsilon^p \left(e^{\varepsilon - \eta} - 1\right)^{- 1} d \varepsilon$$, Applied Scientific Research, Section A, 6, 240-244, (1957) · Zbl 0077.23705 [7] Huang, K., Statistical Mechanics, (1963), New York, NY, USA: John Wiley & Sons, Inc., New York, NY, USA [8] Reichl, L. E., A Modern Course in Statistical Physics, (2004), Berlin, Germany: Wiley-VCH, Berlin, Germany · Zbl 0913.00015 [9] Hill, R. N., A note on certain integrals which appear in the theory of the ideal quantum gases, American Journal of Physics, 38, 1440-1447, (1970) [10] Cody, W. J.; Thacher, H. C., Rational Chebyshev approximations for fermi-dirac integrals of orders -1/2, 1/2 and 3/2, Mathematics of Computation, 21, 97, 30-40, (1967) · Zbl 0149.11905 [11] Garoni, T. M.; Frankel, N. E.; Glasser, M. L., Complete asymptotic expansions of the Fermi-Dirac integrals $$\mathfrak{I}_p \left(\eta\right) = 1 / \operatorname{\Gamma}(p + 1) \int_0^{\operatorname{\infty}} \varepsilon^p / \left(1 + e^{\varepsilon - \eta}\right) d \varepsilon$$, Journal of Mathematical Physics, 42, 4, 1860-1868, (2001) · Zbl 1061.33021 [12] Goano, M., Algorithm 745: Computation of the Complete and Incomplete Fermi-Dirac Integral, ACM Transactions on Mathematical Software, 21, 3, 221-232, (1995) · Zbl 0887.65021 [13] Goano, M., Series expansion of the Fermi-Dirac integral $$F_j(x)$$ over the entire domain of real j and x, Solid-State Electronics, 36, 2, 217-221, (1993) [14] Macleod, A. J., Algorithm 779: Fermi-Dirac Functions of Order -1/2, 1/2, 3/2, 5/2, ACM Transactions on Mathematical Software, 24, 1, 1-12, (1998) · Zbl 0917.65017 [15] Mohankumar, N., Two new series for the Fermi-Dirac integral, Computer Physics Communications, 176, 11-12, 665-669, (2007) · Zbl 1196.81071 [16] Mohankumar, N.; Natarajan, A., The accurate numerical evaluation of half‐order Fermi‐Dirac Integrals, Physica Status Solidi (b) – Basic Solid State Physics, 188, 2, 635-644, (1995) [17] Chaudhry, M. A.; Qadir, A., Operator representation of Fermi-Dirac and Bose-Einstein integral functions with applications, International Journal of Mathematics and Mathematical Sciences, 2007, (2007) · Zbl 1137.33302 [18] Ng, E. W.; Devine, C. J.; Tooper, R. F., Chebyshev polynomial expansion of Bose-Einstein functions of orders 1 to 10$$*$$, Mathematics of Computation, 23, 639-643, (1969) · Zbl 0177.20301 [19] Cvijovi, D., New integral representations of the polylogarithm function, Proceedings of the Royal Society A Mathematical, Physical and Engineering Sciences, 463, 2080, 897-905, (2007) · Zbl 1134.11028 [20] Lee, M. H., Polylogarithms and Riemann’s ζ function, Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 56, 4, 3909-3912, (1997) [21] Lee, M. H., Polylogarithmic analysis of chemical potential and fluctuations in a $$D$$-dimensional free Fermi gas at low temperatures, Journal of Mathematical Physics, 36, 3, 1217-1231, (1995) [22] Ulrich, M. D.; Seng, W. F.; Barnes, P. A., Solutions to the Fermi-Dirac Integrals in Semiconductor Physics Using Polylogarithms, Journal of Computational Electronics, 1, 3, 431-434, (2002) [24] Sneddon, I. N., Fourier Transforms, (1951), New York, NY, USA: McGraw-Hill, New York, NY, USA [25] McLachlan, N. W., Complex Variable Theory & Transform Calculus, (1955), Cambridge University Press [26] van der Pol, B.; Bremmer, H., Operational Calculus, Based on the Two-Sided Laplace Integral, (1955), Cambridge University Press · Zbl 0066.09101 [27] Keller, G.; Fenwick, M., Tabulation of the incomplete Fermi-Dirac functions, The Astrophysical Journal, 117, 437-446, (1953) [28] Mohankumar, N.; Natarajan, A., On the very accurate numerical evaluation of the generalized Fermi-Dirac integrals, Computer Physics Communications, 207, 193-201, (2017) · Zbl 1378.65073 [29] Changshi, L., More precise determination of work function based on Fermi-Dirac distribution and Fowler formula, Physica B: Condensed Matter, 444, 44-48, (2014) [30] Fukushima, T., Precise and fast computation of inverse Fermi-Dirac integral of order 1/2 by minimax rational function approximation, Applied Mathematics and Computation, 259, 698-707, (2015) · Zbl 06881760 [31] Chevillard, S., The functions erf and erfc computed with arbitrary precision and explicit error bounds, Information and Computation, 216, 72-95, (2012) · Zbl 1252.65051 [32] Chevillard, S.; Revol, N., Computation of the error function erf in arbitrary precision with correct rounding, Proceedings of the 8th Conference on Real Numbers and Computers [33] Koroleva, O. N.; Mazhukin, A. V.; Mazhukin, V. I.; Breslavskiy, P. V., Analytical Approximation of the Fermi-Dirac Integrals of Half-Integer and Integer Orders, Mathematical Models and Computer Simulations, 9, 383-389, (2017) · Zbl 1374.81065 [34] Fernandez Velicia, F. J., High-precision analytic approximations for the Fermi-Dirac functions by means of elementary functions, Physical Review A: Atomic, Molecular and Optical Physics, 34, 5, 4387-4395, (1986) [35] Boersma, J.; Glasser, M. L., Asymptotic expansion of a class of Fermi-Dirac integrals, SIAM Journal on Mathematical Analysis, 22, 3, 810-820, (1991) · Zbl 0736.41033 [36] Selvaggi, J. P., Analytical evaluation of the charge carrier density of organic materials with a Gaussian density of states revisited, Journal of Computational Electronics, 17, 1, 61-67, (2017) [37] Paasch, G.; Scheinert, S., Charge carrier density of organics with Gaussian density of states: Analytical approximation for the Gauss-Fermi integral, Journal of Applied Physics, 107, 10, 104501-1-104501-4, (2010)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.