×

Sharp weighted bounds for fractional integrals via the two-weight theory. (English) Zbl 1402.42018

Summary: We derive sharp weighted norm estimates for positive kernel operators on spaces of homogeneous type. Similar problems are studied for one-sided fractional integrals. Bounds of weighted norms are of mixed type. The problems are studied using the two-weight theory of positive kernel operators. As special cases, we derive sharp weighted estimates in terms of Muckenhoupt characteristics.

MSC:

42B20 Singular and oscillatory integrals (Calderón-Zygmund, etc.)
42B25 Maximal functions, Littlewood-Paley theory

References:

[1] K. F. Andersen and E. T. Sawyer, Weighted norm inequalities for the Riemann–Liouville and Weyl fractional integral operators, Trans. Amer. Math. Soc. 308, no. 2 (1988), 547–558. · Zbl 0664.26002 · doi:10.1090/S0002-9947-1988-0930071-4
[2] S. M. Buckley, Estimates for operator norms on weighted spaces and reverse Jensen inequalities, Trans. Amer. Math. Soc. 340, no. 1 (1993), 253–272. · Zbl 0795.42011 · doi:10.1090/S0002-9947-1993-1124164-0
[3] D. Cruz-Uribe and K. Moen, A fractional Muckenhoupt–Wheeden theorem and its consequences, Integral Equations Operator Theory 76 (2013), no. 3, 421–446. · Zbl 1275.42029 · doi:10.1007/s00020-013-2059-z
[4] D. E. Edmunds, V. Kokilashvili, and A. Meskhi, Bounded and Compact Integral Operators, Math. Appl. 543, Kluwer, Dordrecht, 2002. · Zbl 1023.42001
[5] D. E. Edmunds, V. Kokilashvili, and A. Meskhi, On Fourier multipliers in weighted Triebel-Lizorkin spaces, J. Inequal. Appl. 7 (2002), no. 4, 555–591. · Zbl 1016.42008
[6] N. Fujii, Weighted bounded mean oscillation and singular integrals, Math. Jpn. 22 (1977/78), no. 5, 529–534. · Zbl 0385.26010
[7] I. Genebashvili, A. Gogatishvili, V. Kokilashvili, and M. Krbec, Weight Theory for Integral Transforms on Spaces of Homogeneous Type, Pitman Monographs Surveys Pure Appl. Math. 92, Longman, Harlow, 1998. · Zbl 0955.42001
[8] S. Hruščev, A description of weights satisfying the \(A_{∞}\) condition of Muckenhoupt, Proc. Amer. Math. Soc. 90 (1984), no. 2, 253–257. · Zbl 0539.42009
[9] T. Hytönen and C. Pérez, Sharp weighted bounds involving \(A_{∞}\), Anal. PDE. 6 (2013), no. 4, 777–818. · Zbl 1283.42032
[10] T. Hytönen, C. Pérez, and E. Rela, Sharp reverse Hölder property for \(A_{∞}\) weights on spaces of homogeneous type, J. Funct. Anal. 263 (2012), no. 12, 3883–3899. · Zbl 1266.42045
[11] A. Kairema, Two-weight norm inequalities for potential type and maximal operators in a metric space, Publ. Mat. 57 (2013), no. 1, 31–56. · Zbl 1284.42055 · doi:10.5565/PUBLMAT_57113_01
[12] A. Kairema, Sharp weighted bounds for fractional integral operators in a space of homogeneous type, Math. Scand. 114 (2014), no. 2, 226–253. · Zbl 1302.47075 · doi:10.7146/math.scand.a-17109
[13] V. Kokilashvili and M. Krbec, Weighted Inequalities in Lorentz and Orlicz Spaces, World Scientific, River Edge, N.J., 1991. · Zbl 0751.46021
[14] V. Kokilashvili, A. Meskhi, and M. A. Zaighum, Sharp weighted bounds for one-sided operators, Georgian Math. J. 24 (2017), no. 2, 227–240. · Zbl 1364.42018 · doi:10.1515/gmj-2017-0016
[15] M. T. Lacey, K. Moen, C. Pérez, and R. H. Torres, Sharp weighted bounds for fractional integral operators, J. Funct. Anal. 259 (2010), no. 5, 1073–1097. · Zbl 1196.42014 · doi:10.1016/j.jfa.2010.02.004
[16] A. K. Lerner and K. Moen, Mixed \(A_{p}-A_{∞}\) estimates with one supremum, Studia Math. 219 (2013), no. 3, 247–267. · Zbl 1317.42015 · doi:10.4064/sm219-3-5
[17] M. Lorente, A characterization of two weight norm inequalities for one-sided operators of fractional type, Canad. J. Math. 49 (1997), no. 5, 1010–1033. · Zbl 0915.26002 · doi:10.4153/CJM-1997-051-6
[18] F. J. Martin-Reyes and A. de la Torre, Two weight norm inequalities for fractional one-sided maximal operators, Proc. Amer. Math. Soc. 117 (1993), no. 2, 483–489. · Zbl 0769.42010 · doi:10.1090/S0002-9939-1993-1110548-9
[19] F. J. Martin-Reyes, L. Pick, and A. de la Torre, \(A_{∞}^{+}\) condition, Canad. Math. J. 45 (1993), no. 6, 1231–1244. · Zbl 0797.42012
[20] V. G. Maz’ya, Sobolev Spaces, Springer Ser. Soviet Math., Springer, Berlin, 1985. · Zbl 0692.46023
[21] B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207–226. · Zbl 0236.26016 · doi:10.1090/S0002-9947-1972-0293384-6
[22] B. Muckenhoupt and R. Wheeden, Weighted norm inequalities for fractional integrals, Trans. Amer. Math. Soc. 192 (1974), 261–274. · Zbl 0289.26010 · doi:10.1090/S0002-9947-1974-0340523-6
[23] E. T. Sawyer, A characterization of a two-weight norm inequality for maximal operators, Studia Math. 75 (1982), no. 1, 1–11. · Zbl 0508.42023 · doi:10.4064/sm-75-1-1-11
[24] E. T. Sawyer, A characterization of two weight norm inequalities for fractional and Poisson integrals, Trans. Amer. Math. Soc. 308, no. 2 (1988), 533–545. · Zbl 0665.42023 · doi:10.1090/S0002-9947-1988-0930072-6
[25] E. T. Sawyer and R. L. Wheeden, Weighted inequalities for fractional integrals on Euclidean and homogeneous spaces, Amer. J. Math. 114 (1992), no. 4, 813–874. · Zbl 0783.42011 · doi:10.2307/2374799
[26] A. Scapellato, On some qualitative results for the solution to a Dirichlet problem in local generalized Morrey spaces, preprint, http://aip.scitation.org/doi/abs/10.1063/1.4972730 (accessed 10 March 2018).
[27] A. Scapellato, Some properties of integral operators on generalized Morrey spaces, preprint, http://adsabs.harvard.edu/abs/2017AIPC.1863Y0004S (accessed 10 March 2018).
[28] J.-O. Strömberg and A. Torchinsky, Weighted Hardy Spaces, Lecture Notes in Math. 1381, Springer, Berlin, 1989. · Zbl 0676.42021
[29] R. L. Wheeden, A characterization of some weighted norm inequalities for the fractional maximal function, Studia Math. 107 (1993), no. 3, 257–272. · Zbl 0809.42009 · doi:10.4064/sm-107-3-257-272
[30] J. M. Wilson, Weighted inequalities for the dyadic square function without dyadic \(A_{∞}\), Duke Math. J. 55 (1987), no. 1, 19–50. · Zbl 0639.42016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.