×

Spatial capture-recapture models. (English) Zbl 1442.62210

Summary: There has been a rapid growth in spatial capture-recapture (SCR) methods in the last decade. This paper provides an overview of existing SCR models and suggestions on how they might develop in future. The core of the paper is a likelihood framework that synthesises existing SCR models. This is used to illustrate similarities and differences between models.
The key difference between conventional capture-recapture models and SCR models is that the latter include a spatial point process model for individuals’ locations and allow capture probability to depend on location. This extends the kinds of inferences that can be drawn from capture-recapture surveys, allowing them to address questions of a fundamentally spatial nature, relating to animal distribution, habitat preference, movement patterns, spatial connectivity of habitats and dependence of demographic parameters on spatial variables.

MSC:

62M30 Inference from spatial processes
60G55 Point processes (e.g., Poisson, Cox, Hawkes processes)
62F10 Point estimation
PDF BibTeX XML Cite
Full Text: DOI Euclid

References:

[1] Borchers, D. L. and Efford, M. G. (2008). Spatially explicit maximum likelihood methods for capture-recapture studies. Biometrics64 377-385. · Zbl 1138.62088
[2] Borchers, D. L., Distiller, G., Foster, R., Harmsen, B. and Milazzo, L. (2014). Continuous-time spatially explicit capture-recapture, with an application to a jaguar camera-trap survey. Methods in Ecology & Evolution5 565-665.
[3] Borchers, D. L., Stevenson, B. C., Kidney, D., Thomas, L. and Marques, T. A. (2015). A unifying model for capture-recapture and distance sampling surveys of wildlife populations. J. Amer. Statist. Assoc.110 195-204. · Zbl 1373.62559
[4] Chandler, R. B. and Royle, J. A. (2013). Spatially explicit models for inference about density in unmarked or partially marked populations. Ann. Appl. Stat.7 936-954. · Zbl 1360.62508
[5] Cormack, R. (1964). Estimates of survival from the sighting of marked animals. Biometrika51 429-438. · Zbl 0151.25904
[6] Dawson, D. K. and Efford, M. G. (2009). Bird population density estimated from acoustic signals. Ecology46 1201-1209.
[7] Distiller, G. and Borchers, D. L. (2015). A spatially explicit capture-recapture estimator for single-catch traps. Ecol. Evol.5 5075-5087.
[8] Efford, M. G. (2004). Density estimation in live-trapping studies. Oikos106 598-610.
[9] Efford, M. G. (2011). Estimation of population density by spatially explicit capture-recapture analysis of data from area searches. Ecology92 2202-2207.
[10] Efford, M. G. (2013). secr: Spatially explicit capture-recapture. Version 2.7.0. Univ. Otago, Available at http://www.otago.ac.nz/density.
[11] Efford, M. G. (2014). Bias from heterogeneous usage of space in spatially explicit capture-recapture analyses. Methods in Ecology & Evolution5 599-602.
[12] Efford, M. G., Borchers, D. L. and Byrom, A. E. (2009). Density estimation by spatially explicit capture-recapture: Likelihood-based methods. In Modeling Demographic Processes in Marked Populations (D. L. Thompson, E. G. Cooch and M. J. Conroy, eds.) 255-269. Springer, New York.
[13] Efford, M. G., Borchers, D. L. and Mowat, G. (2013). Varying effort in capture-recapture studies. Methods in Ecology & Evolution4 629-636.
[14] Efford, M. G. and Dawson, D. K. (2009). Bird population density estimated from acoustic signals. J. Appl. Ecol.46 1201-1209.
[15] Efford, M. G., Dawson, D. K. and Borchers, D. L. (2009). Population density estimated from locations of individuals on a passive detector array. Ecology90 2676-2682.
[16] Efford, M. G. and Mowat, G. (2014). Compensatory heterogeneity in spatially explicit capture-recapture data. Ecology95 1341-1348.
[17] Efford, M. G., Dawson, D. K., Jhala, Y. V. and Qureshi, Q. (2015). Density-dependent home-range size revealed by spatially explicit capture-recapture. Ecography38 1-13.
[18] Ergon, T. and Gardner (2013). Separating mortality and emigration: Modelling space use, dispersal and survival with robust-design spatial capture-recapture data. Methods in Ecology & Evolution5 1327-1336.
[19] Fewster, R. M., Stevenson, B. C. and Borchers, D. L. (2016). Trace-contrast models for capture-recapture without capture histories. Statist. Sci.31 245-258. · Zbl 1442.62211
[20] Gardner, B., Repucci, J., Lucherini, M. and Royle, J. A. (2010). Spatially explicit inference for open populations: Estimating demographic parameters from camera-trap studies. Ecology91 3376-3383.
[21] Illian, J., Penttinen, A., Stoyan, H. and Stoyan, D. (2009). Statistical Analysis and Modelling of Spatial Point Patterns. Wiley, New York. · Zbl 1197.62135
[22] Jolly, G. M. (1965). Explicit estimates from capture-recapture data with both death and immigration-stochastic model. Biometrika52 225-247. · Zbl 0141.36601
[23] King, R., McClintock, B. T., Kidney, D. and Borchers, D. L. (2016). Capture-recapture abundance estimation using a semi-complete data likelihood approach. Ann. Appl. Stat.10 264-285. · Zbl 1454.62346
[24] Link, W. A. (2003). Nonidentifiability of population size from capture-recapture data with heterogeneous detection probabilities. Biometrics59 1123-1130. · Zbl 1274.62821
[25] Link, W. A., Yoshizaki, J., Bailey, L. L. and Pollock, K. H. (2010). Uncovering a latent multinomial: Analysis of mark-recapture data with misidentification. Biometrics66 178-185. · Zbl 1187.62193
[26] Marques, T. A., Thomas, L., Martin, S. W., Mellinger, D. K., Jarvis, S., Morrissey, R. P., Ciminello, C. and DiMarzio, N. (2010). Spatially explicit capture recapture methods to estimate minke whale abundance from data collected at bottom mounted hydrophones. Journal of Ornithology152 S445-S455.
[27] McClintock, B. T., Bailey, L. L., Dreher, B. P. and Link, W. A. (2014a). Probit models for capture-recapture data subject to imperfect detection, individual heterogeneity and misidentification. Ann. Appl. Stat.8 2461-2484. · Zbl 1454.62364
[28] McClintock, B. T., Hill, J. M., Fritz, L., Chumbley, K., Luxa, K. and Diefenbach, D. R. (2014b). Mark-resight abundance estimation under incomplete identification of marked individuals. Methods in Ecology & Evolution5 1295-1304.
[29] Ornstein, L. S. and Uhnlenbeck, G. E. (1930). On the theory of Brownian motion. Phys. Rev.36 823-841. · JFM 56.1277.03
[30] Otis, D. L., Burnham, K. P., White, G. C. and Anderson, D. R. (1978). Statistical inference from capture data on closed animal populations. Wildlife Monographs62 1-135. · Zbl 0424.62077
[31] Pledger, S. (2000). Unified maximum likelihood estimates for closed capture-recapture models using mixtures. Biometrics56 434-442. · Zbl 1060.62652
[32] Reich, B. J. and Gardner, B. (2014). A spatial capture-recapture model for territorial species. Environmetrics25 630-637.
[33] Royle, A. J., Fuller, A. K. and Sutherland, C. (2016). Spatial capture-recapture models allowing Markovian transience of dispersal. Population Ecology58 53-62.
[34] Royle, J. A. and Young, K. V. (2008). A hierarchical model for spatial capture-recapture data. Ecology89 2281-2289.
[35] Royle, A. J., Chandler, R. B., Sun, C. C. and Fuller, A. K. (2013). Integrating resource selection information with spatial capture-recapture. Methods in Ecology and Evolution4 520-530.
[36] Royle, J. A., Chandler, R. B., Sollmann, R. and Gardner, B. (2014). Spatial Capture-Recapture. Academic Press, San Diego, CA.
[37] Royle, J. A., Sutherland, C., Fuller, A. K. and Sun, C. C. (2015). Likelihood analysis of spatial capture-recapture models for stratified or class structured populations. Ecosphere6 1-11.
[38] Schofield, M. R. and Barker, R. J. (2016). 50-year-old curiosities: Ancillarity and inference in capture-recapture models. Statist. Sci.31 161-174. · Zbl 1442.62023
[39] Seber, G. A. F. (1965). A note on the multiple-recapture census. Biometrika52 249-259. · Zbl 0141.36602
[40] Sollmann, R., Gardner, B., Chandler, R. B., Shindle, D. B., Onarato, D. P., Royle, J. A. and O’Connell, A. F. (2013a). Using multiple data sources provides density estimates for endangered Florida panther. J. Appl. Ecol.50 961-968.
[41] Sollmann, R., Gardner, B., Parsons, A. W., Stocking, J. J., McClintock, B. T., Simons, T. R., Pollock, K. J. and O’Connell, A. F. (2013b). A spatial mark-resight model augmented with telemetry data. Ecology94 553-559.
[42] Stevenson, B. C., Borchers, D. L., Altwegg, R., Swift, R. J., Gillespie, D. M. and Measey, G. J. (2015). A general framework for animal density estimation from acoustic detections across a fixed microphone array. Methods in Ecology & Evolution6 38-48.
[43] Sutherland, C., Fuller, A. K. and Royle, J. A. (2015). Modelling non-Euclidean movement and landscapte connectivity in highly structured ecological networks. Methods in Ecology & Evolution6 169-177.
[44] Wright, J. A., Barker, R. J., Schofield, M. R., Frantz, A. C., Byrom, A. E. and Gleeson, D. M. (2009). Incorporating genotype uncertainty into mark-recapture-type models for estimating abundance using DNA samples. Biometrics65 833-840. · Zbl 1172.62067
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.