##
**Chaos communication: a case of statistical engineering.**
*(English)*
Zbl 1442.62761

Summary: The paper gives a statistically focused selective view of chaos-based communication which uses segments of noise-like chaotic waves as carriers of messages, replacing the traditional sinusoidal radio waves. The presentation concerns joint statistical and dynamical modelling of the binary communication system known as “chaos shift-keying”, representative of the area, and leverages the statistical properties of chaos. Practically, such systems apply to both wireless and optical laser communication channels. Theoretically, the chaotic waves are generated iteratively by chaotic maps, and practically, by electronic circuits or lasers. Both single-user and multiple-user systems are covered. The focus is on likelihood-based decoding of messages, essentially estimation of binary-valued parameters and efficiency of the system is in terms of the probability of bit decoding error. The emphasis is on exact theoretical results for bit error rate, their structured approximations and engineering interpretations. Design issues, optimality of performance, interference and fading are other topics considered. The statistical aspects of chaotic synchronization are involved in the modelling of optical systems. Empirical illustrations from an experimental laser-based system are presented. The overall aim is to show the use of statistical methodology in unifying and advancing the area.

### MSC:

62P30 | Applications of statistics in engineering and industry; control charts |

94A05 | Communication theory |

### Keywords:

bit error rate; chaos communications; chaos modelling; chaos shift-keying; communications engineering; decoding as likelihood-based statistical inference; empirical communication system analysis; Gaussian approximations; laser chaos; nonlinear dynamics; optical noise; statistical modelling; statistical time series; synchronization error### References:

[1] | Abel, A., Schwarz, W. and Gotz, M. (2000). Noise performance of chaotic communication systems. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl.47 1726-1732. |

[2] | Berliner, L. M. (1992). Statistics, probability and chaos. Statist. Sci.7 69-122. · Zbl 0955.62520 |

[3] | Carroll, T. L. and Pecora, L. M. (1992). A circuit for studying the synchronization of chaotic systems. Internat. J. Bifur. Chaos Appl. Sci. Engrg.2 659-667. · Zbl 0873.58045 |

[4] | Donati, S. and Mirasso, C. M. (2002). Introduction to the feature section on optical chaos and applications to cryptography. IEEE J. Quantum Electron.38 1138-1140. |

[5] | Galias, Z. and Maggio, G. M. (2001). Quadrature chaos-shift keying: Theory and performance analysis. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl.48 1510-1519. · Zbl 0998.94005 |

[6] | Hasler, M. and Schimming, T. (2002). Optimal and suboptimal chaos receivers. Proc. IEEE50 733-746. |

[7] | Hasler, M., Mazzini, G., Ogorzalek, M., Rovatti, M. and Setti, G. (2002). Scanning the special issue—special issue on applications of nonlinear dynamics to electronic and information engineering. Proc. IEEE90 631-640. |

[8] | Heil, T., Mulet, J., Fischer, I., Mirasso, C. R., Peil, M., Colet, P. and Elsaber, W. (2002). ON/OFF phase shift keying for chaos-encrypted communication using external-cavity semiconductor lasers. IEEE J. Quantum Electron.38 1162-1170. |

[9] | Homer, M. E., Hogan, S. J., Bernado, M. D. and Williams, C. (2004). The importance of choosing attractors for optimizing chaotic communications. IEEE Trans. Circuits Syst. II, Express Briefs51 511-516. |

[10] | Hua, Y. and Ping, J. G. (2012). High-efficiency differential-chaos-shift-keying scheme for chaos-based non-coherent communication. IEEE Trans. Circuits Syst. II, Express Briefs59 312-316. |

[11] | Kaddoum, G. and Gagnon, F. (2012). Design of a high-data-rate chaos-shift system. IEEE Trans. Circuits Syst. II, Express Briefs59 448-452. |

[12] | Kaddoum, G. and Gagnon, F. (2013a). Performance analysis of STBC-CSK communication system over slow fading channel. Signal Process.93 2055-2060. |

[13] | Kaddoum, G. and Gagnon, F. (2013b). Lower bound on the BER of a decode-and-forward relay network under chaos shift keying communication system. IET Commun.COM-2013-0421.R2 1-16. |

[14] | Kaddoum, G., Soujeri, E. and Arcila, C. A. (2015). I-DCSK: An improved non-coherent communication system architecture. IEEE Transactionson Circuits, Systems II: Express Briefs 1-5. |

[15] | Kaddoum, G., Coulon, M., Roviras, D. and Charge, P. (2010). Theoretical performance for asychronous multi-user chaos-based communication systems on fading channels. Signal Processing90 2923-2933. · Zbl 1195.94029 |

[16] | Kennedy, M. P., Rovatti, R. and Setti, G., eds. (2000). Chaotic Electronics in Telecommunications. CRC Press, Boca Raton. |

[17] | Kohda, T. and Murao, K. (1990). Approach to time sereis analysis for one-dimnsionaal chaos based on Frobenius-Perron operator. Transactions Institute of Electronics, Information and Communication Engineers of Japam (IEICE), E73 793-800. |

[18] | Kolumbán, G. (2000). Theoretical noise performance of correlator-based chaotic communications schemes. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl.47 1692-1701. · Zbl 0984.94003 |

[19] | Kolumbán, G. and Kennedy, M. P. (2000). Special Issue on “Non-coherent chaotic communications”. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl.47 1661-1662. · Zbl 0976.00020 |

[20] | Kolumbán, G., Vizvari, B., Schwarz, W. and Abel, A. (1996). Differential chaos shift keying: A robust coding for chaos communication. In Proc. NDES’96 87-92. Seville, Spain. |

[21] | Kolumbán, G., Kis, G., Jako, Z. and Kennedy, M. P. (1998). FM-DCSK: A robust modulation scheme for chaos communication. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences E81-A 1798-1802. |

[22] | Larson, L. E., Liu, J.-M. and Tsimring, L. S., eds. (2006). Digital Communications Using Chaos and Nonlinear Dynamics. Springer, New York. |

[23] | Lasota, A. and Mackey, M. C. (1994). Chaos, Fractals, and Noise: Stochastic Aspects of Dynamics, 2nd ed. Applied Mathematical Sciences97. Springer, New York. · Zbl 0784.58005 |

[24] | Lau, F. C. M., Cheong, K. Y. and Tse, C. K. (2003). Permutation-based DCSK and multiple-access DCSK systems. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl.50 733-742. · Zbl 1368.94004 |

[25] | Lau, F. C. M. and Tse, C. K. (2003). Chaos-Based Digital Communications Systems. Springer, Heidelberg. · Zbl 1030.94002 |

[26] | Lawrance, A. J. and Balakrishna, N. (2001). Statistical aspects of chaotic maps with negative dependence in a communications setting. J. R. Stat. Soc. Ser. B. Stat. Methodol.63 843-853. · Zbl 0988.62072 |

[27] | Lawrance, A. J. and Balakrishna, N. (2008). Statistical dependency in chaos. Internat. J. Bifur. Chaos Appl. Sci. Engrg.18 3207-3219. · Zbl 1165.37301 |

[28] | Lawrance, A. J. and Ohama, G. (2003). Exact calculation of bit error rates in communication systems with chaotic modulation. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl.50 1391-1400. · Zbl 1368.94071 |

[29] | Lawrance, A. J. and Ohama, G. (2005). Bit error probability and bit outage rate in chaos communication. Circuits Systems Signal Process.24 519-533. · Zbl 1103.94015 |

[30] | Lawrance, A. J., Papamarkou, T. and Uchida, A. (2017). Synchronized laser choas communication: Statistical investigation of an experimental system. IEEE J. Quantum Electronics53. To appear. |

[31] | Lawrance, A. J. and Yao, J. (2008). Likelihood-based demodulation in multi-user chaos shift keying communication. Circuits Systems Signal Process.27 847-864. · Zbl 1162.94420 |

[32] | Mirasso, C. R., Colet, P. and Garcia-Fernandez, P. (1996). Synchronization of chaotic semiconductor lasers: Application to encoded communications. IEEE Photonics Technol. Lett.8 299-301. |

[33] | Papamarkou, T. and Lawrance, A. J. (2007). Optimal spreading sequences for chaos-based communications. In 2007 International Symposium on Nonlinear Theory and Its Applications (NOLTA’07). Research Society of Nonlinear Theory and Its Applications 208-211. IEICE, Vancouver. |

[34] | Papamarkou, T. and Lawrance, A. J. (2013). Paired Bernoulli circular spreading: Attaining the BER lower bound in a CSK setting. Circuits Systems Signal Process.32 143-166. |

[35] | Parlitz, U. and Ergezinger, S. (1994). Robust communication based on chaotic spreading sequences. Phys. Lett. A188 146-150. |

[36] | Pecora, L. M. and Carroll, T. L. (1990). Synchronization in chaotic systems. Phys. Rev. Lett.64 821-824. · Zbl 0938.37019 |

[37] | Proakis, J. G. (2001). Digital Communication. McGraw Hill, Boston, MA. |

[38] | Sushchik, M., Tsimring, L. S. and Volkovskii, A. R. (2000). Performance analysis of correlation-based communication schemes utilizing chaos. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl.47 1684-1691. |

[39] | Tam, W. M., Lau, F. C. M. and Tse, C. K. (2003). The analysis of bit error rates for multiple access CSK and DCSK communication. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl.50 702-707. |

[40] | Tam, W. M., Lau, F. C. M. and Tse, C. K. (2007). Digital Communications with Chaos. Elsevier, Oxford. |

[41] | Tam, W. M., Lau, F. C. M., Tse, C. K. and Yip, M. (2002). An approach to calculating the bit-error rate of a coherent chaos-shift-keying communication system under a noisy multiuser environment. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl.49 210-233. |

[42] | Tam, W. M., Lau, F. C. M., Tse, C. K. and Lawrance, A. J. (2004). Exact analytical of bit error rates for multiple access chaos-based communication systems. IEEE Trans. Circuits Syst. I51 473-481. |

[43] | Uchida, A. (2012). Optical Communications with Lasers—Applications of Nonlinear Dynamics and Synchronization. Wiley-VCH, Weinheim. · Zbl 1239.78001 |

[44] | Uchida, A., Yoshimori, S., Shinozuka, M., Ogawa, T. and Kannari, F. (2001). Chaotic on off keying for secure communications. Opt. Lett.26 866-868. |

[45] | Yao, J. (2004). Optimal chaos shift keying communications with correlation decoding. In IEEE International Symposium on Circuits and Systems (ISCAS2004) 593-596, Vancouver, Canada. |

[46] | Zhou, Z., Wang, J. and Ye, Y. (2010). Exact BER analysis of differential chaos shift keying communication system in fading channels. Wirel. Pers. Commun.53 299-310. |

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.