A conversation with Samad Hedayat. (English) Zbl 1442.01025


01A70 Biographies, obituaries, personalia, bibliographies

Biographic References:

Hedayat, A. Samad
Full Text: DOI Euclid


[1] Bose, R. C., Shrikhande, S. S. and Parker, E. T. (1960). Further results on the construction of mutually orthogonal Latin squares and the falsity of Euler’s conjecture. Canad. J. Math.12 189-203. · Zbl 0093.31905
[2] Euler, L. (1782). Recherches sur une nouvelle espèce de quarrés magiques. Zeeuwsch Genootschap der Wetenschappen9 85-239.
[3] Federer, W. T. (1955). Experimental Design: Theory and Application. Macmillan, New York.
[4] Hedayat, A. S., Izenman, A. J. and Zhang, W. G. (1996). Random sampling for the forensic study of controlled substances (with discussion). In Proceedings of the Physical and Engineering Sciences Section 12-23. Amer. Statisc. Assoc., Alexandria, VA.
[5] Hedayat, A. S. and Majumdar, D. (1985). Families of \(A\)-optimal block designs for comparing test treatments with a control. Ann. Statist.13 757-767. · Zbl 0586.62113
[6] Hedayat, A. and Seiden, E. (1970). \(F\)-square and orthogonal \(F\)-squares design: A generalization of Latin square and orthogonal Latin squares design. Ann. Math. Stat.41 2035-2044. · Zbl 0215.33402
[7] Hedayat, A. and Seiden, E. (1974). On the theory and application of sum composition of Latin squares and orthogonal Latin squares. Pacific J. Math.54 85-113. · Zbl 0315.05011
[8] Hedayat, A. S. and Sinha, B. K. (1991). Design and Inference in Finite Population Sampling. Wiley, New York. · Zbl 0850.62160
[9] Hedayat, A. S. and Sinha, B. K. (2003). On a sampling design for estimation of negligible accident rates involving electronic toys. Amer. Statist.57 249-252. Corrigendum: Ibid 59 (2005) 280. · Zbl 1182.62220
[10] Hedayat, A. S., Sloane, N. J. A. and Stufken, J. (1999). Orthogonal Arrays: Theory and Applications. Springer, New York. With a foreword by C. R. Rao. · Zbl 0998.62063
[11] Hedayat, S. and Stufken, J. (2009). Comment on “What is statistics?” [MR2750071]. Amer. Statist.63 115-116.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.