×

zbMATH — the first resource for mathematics

On the algebraic boundaries among typical ranks for real binary forms. (English) Zbl 1397.15021
Summary: We describe the algebraic boundaries of the regions of real binary forms with fixed typical rank and of degree at most eight, showing that they are dual varieties of suitable coincident root loci.

MSC:
15A69 Multilinear algebra, tensor calculus
14P10 Semialgebraic sets and related spaces
14N05 Projective techniques in algebraic geometry
11E16 General binary quadratic forms
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Angelini, E.; Bocci, C.; Chiantini, L., Real identifiability vs. complex identifiability, Linear Multilinear Algebra, 66, 6, 1257-1267, (2018) · Zbl 1393.14052
[2] Bernardi, A.; Brachat, J.; Mourrain, B., A comparison of different notions of ranks of symmetric tensors, Linear Algebra Appl., 460, 205-230, (2014) · Zbl 1298.15034
[3] Bernardi, A.; Blekherman, G.; Ottaviani, G., On real typical ranks, Boll. Unione Mat. Ital., (2015) · Zbl 1403.15018
[4] Blekherman, G., Typical real ranks of binary forms, Found. Comput. Math., 15, 3, 793-798, (2015) · Zbl 1330.14096
[5] Brown, C. W., QEPCAD B: a program for computing with semi-algebraic sets using cads, SIGSAM Bull., 37, 4, 97-108, (2003) · Zbl 1083.68148
[6] Chipalkatti, J. V., On equations defining coincident root loci, J. Algebra, 267, 1, 246-271, (2003) · Zbl 1099.13501
[7] Chipalkatti, J. V., Invariant equations defining coincident root loci, Arch. Math., 83, 5, 422-428, (2004) · Zbl 1068.12001
[8] Carlini, E.; Kummer, M.; Oneto, A.; Ventura, E., On the real rank of monomials, Math. Z., 286, 1, 571-577, (2017) · Zbl 1369.14070
[9] Comon, P.; Ottaviani, G., On the typical rank of real binary forms, Linear Multilinear Algebra, 60, 6, 657-667, (2012) · Zbl 1248.15021
[10] Causa, A.; Re, R., On the maximum rank of a real binary form, Ann. Mat. Pura Appl., 190, 1, 55-59, (2011) · Zbl 1222.14123
[11] Gelfand, I. M.; Kapranov, M. M.; Zelevinsky, A. V., Discriminants, resultants, and multidimensional determinants, (2008), Birkhäuser Boston, reprint of the 1994 edition · Zbl 1138.14001
[12] Grayson, D. R.; Stillman, M. E., Macaulay2 — a software system for research in algebraic geometry (version 1.12), (2018), available at:
[13] Hilbert, D., Über die singularitäten der diskriminantenfläche, Math. Ann., 30, 4, 437-441, (1887) · JFM 19.0843.03
[14] Iarrobino, A.; Kanev, V., Power sums, Gorenstein algebras, and determinantal loci, Lecture Notes in Mathematics, vol. 1721, (1999), Springer-Verlag, with an Appendix by A. Iarrobino and S.L. Kleiman · Zbl 0942.14026
[15] Katz, G., How tangents solve algebraic equations, or a remarkable geometry of discriminant varieties, Expo. Math., 21, 3, 219-261, (2003) · Zbl 1045.14021
[16] Kohn, K., Coisotropic hypersurfaces in the Grassmannian, (2016)
[17] Kurmann, S., Some remarks on equations defining coincident root loci, J. Algebra, 352, 1, 223-231, (2012) · Zbl 1252.14036
[18] Landsberg, J. M., Tensors: geometry and applications, Graduate Studies in Mathematics, vol. 128, (2012), American Mathematical Soc. · Zbl 1238.15013
[19] Lee, H.; Sturmfels, B., Duality of multiple root loci, J. Algebra, 446, 499-526, (2016) · Zbl 1346.14126
[20] Massarenti, A.; Mella, M.; Staglianò, G., Effective identifiability criteria for tensors and polynomials, J. Symbolic Comput., 87, 227-237, (2018) · Zbl 1388.15022
[21] Michałek, M.; Moon, H.; Sturmfels, B.; Ventura, E., Real rank geometry of ternary forms, Ann. Mat. Pura Appl., 196, 3, 1025-1054, (2017) · Zbl 1390.14179
[22] Oeding, L., Hyperdeterminants of polynomials, Adv. Math., 231, 3, 1308-1326, (2012) · Zbl 1252.14029
[23] Staglianò, G., A macaulay2 package for computations with rational maps, J. Softw. Algebra Geom., 8, 1, 61-70, (2018) · Zbl 1408.14050
[24] Staglianò, G., A package for computations with classical resultants, J. Softw. Algebra Geom., 8, 1, 21-30, (2018) · Zbl 1409.13052
[25] Sturmfels, B., The Hurwitz form of a projective variety, J. Symbolic Comput., 79, 186-196, (2017) · Zbl 1359.14043
[26] Weyman, J., The equations of strata for binary forms, J. Algebra, 122, 1, 244-249, (1989) · Zbl 0689.14001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.