Sahoo, Satyajit; Das, Namita; Mishra, Debasisha Numerical radius inequalities for operator matrices. (English) Zbl 06946450 Adv. Oper. Theory 4, No. 1, 197-214 (2019). Summary: Several numerical radius inequalities for operator matrices are proved by generalizing earlier inequalities. In particular, the following inequalities are obtained: if \(n\) is even, \[ 2w(T) \leq \max\{\| A_1 \|, \| A_2 \|,\dots,\| A_n \|\}+\frac{1}{2}\sum_{k=0}^{n-1} \| |A_{n-k}|^{t}|A_{k+1}^{*}|^{1-t} \|, \] and if \(n\) is odd, \[ 2w(T) \leq \max\{\| A_1 \|,\| A_2 \|,\dots,\| A_n \|\}+w\bigg(\widetilde{A}_{(\frac{n+1}{2})t}\bigg)+ \frac{1}{2}\sum_{k=0}^{n-1} \| |A_{n-k}|^{t}|A_{k+1}^{*}|^{1-t} \|, \] for all \(t\in [0,1]\), \( A_i\)’s are bounded linear operators on the Hilbert space \(\mathcal{H}\), and \(T\) is off diagonal matrix with entries \(A_1, \cdots, A_n\). Cited in 18 Documents MSC: 47A12 Numerical range, numerical radius 47A63 Linear operator inequalities 47A30 Norms (inequalities, more than one norm, etc.) of linear operators Keywords:Aluthge transform; spectral radius; numerical radius; operator matrix; polar decomposition PDF BibTeX XML Cite \textit{S. Sahoo} et al., Adv. Oper. Theory 4, No. 1, 197--214 (2019; Zbl 06946450) Full Text: DOI Euclid Link OpenURL References: [1] A. Abu-Omar and F. Kittaneh, A numerical radius inequality involving the generalized Aluthge transform, Studia Math. 216 (2013), 69–75. · Zbl 1279.47015 [2] M. Bakherad and K. Shebrawi, Some generalizations of the Aluthge transform of operators and their consequences, preprint. [3] R. Bhatia, Matrix analysis, Graduate Texts in Mathematics, 169, Springer-Verlag, New York, 1997. · Zbl 0863.15001 [4] J. F. Carlson, D. N. Clark, C. Foias, and J. P. Williams, Projective Hilbert \(\bold A(\bold D)\)-modules, New York J. Math. 1 (1994/95), 26–38. [5] S. Dragomir, A survey of some recent inequalities for the norm and numerical radius of operators in Hilbert spaces, Banach J. Math. Anal. 2 (2007), no. 1, 154–175. · Zbl 1136.47006 [6] P. R. Halmos, Ten problems in Hilbert space, Bull. Amer. Math. Soc. 76 (1970), 887–933. · Zbl 0204.15001 [7] O. Hirzallah, F. Kittaneh, and K. Shebrawi, Numerical radius inequalities for certain \(2× 2\) operator matrices, Integr. Equ. Oper. Theory. 71 (2011), 129–147. · Zbl 1238.47004 [8] J. C. Hou and H. K. Du, Norm inequalities of positive operator matrices, Integr. Equ. Oper. Theory. 22 (1995), 281–294. · Zbl 0839.47004 [9] F. Kittaneh, A numerical radius inequality and an estimate for the numerical radius of the Frobenius companion matrix, Studia Math. 158 (2003), no. 1, 11–17. · Zbl 1113.15302 [10] A. D. Mohammed, A. Z. Khaldoun, A. Mohammed, and B. A. Feras, General numerical radius inequalities for matrices of operators, Open Math. 14 (2016), 109–117. · Zbl 1354.47006 [11] K. Okubo, On weakly unitarily invariant norm and the Aluthge transformation, Linear Algebra Appl. 371 (2003), 369–375. · Zbl 1029.15025 [12] S. Petrovic, Some remarks on the operator of Foias and Williams, Proc. Amer. Math. Soc. 124 (1996), no. 9, 2807–2811. · Zbl 0859.47020 [13] K. Shebrawi, Numerical Radius inequalities for certain \(2×2\) operator matrices II, Linear Algebra Appl. 523 (2017), 1–12. · Zbl 1453.47001 [14] K. Shebrawi and H. Albadawi, Numerical radius and operator norm inequalities, J. Inequal. Appl. 1 (2009), Article ID 492154. · Zbl 1179.47004 [15] T. Yamazaki, On upper and lower bounds of the numerical radius and an equality condition, Studia Math. 178 (2007), no. 1, 83–89. · Zbl 1114.47003 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.