×

zbMATH — the first resource for mathematics

Extra precision docking, free energy calculation and molecular dynamics simulation studies of CDK2 inhibitors. (English) Zbl 1397.92304
Summary: Molecular docking, free energy calculation and molecular dynamics (MD) simulation studies have been performed, to explore the putative binding modes of 3,5-diaminoindazoles, imidazo(1,2-\(b\))pyridazines and triazolo(1,5-\(a\)) pyridazines series of cyclin-dependent kinase (CDK2) inhibitors. To evaluate the effectiveness of docking protocol in flexible docking, we have selected crystallographic bound compound to validate our docking procedure as evident from root mean square deviations (RMSDs). We found different binding sites namely catalytic, inhibitory phosphorylation, cyclin binding and CKS-binding site of the CDK2 contributing towards the binding of these compounds. Moreover, correlation between free energy of binding and biological activity yielded a statistically significant correlation coefficient. Finally, three representative protein-ligand complexes were subjected to molecular dynamics simulation to determine the stability of the predicted conformations. The low value of the RMSDs between the initial complex structure and the energy minimized final average complex structure suggests that the derived docked complexes are close to equilibrium. We suggest that the phenylacetyl type of substituents and cyclohexyl moiety make the favorable interactions with a number of residues in the active site, and show better inhibitory activity to improve the pharmacokinetic profile of compounds against CDK2. The structure-based drug design strategy described in this study will be highly useful for the development of new inhibitors with high potency and selectivity.
MSC:
92C45 Kinetics in biochemical problems (pharmacokinetics, enzyme kinetics, etc.)
92C40 Biochemistry, molecular biology
Software:
DESMOND
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Aixiao, L.; Florent, B.; Francois, M.; Michel, D.; Baoshan, W., Interaction mode and selectivity of the 2PU inhibitor with the CDK4 and CDK2 cyclin-dependant kinases: a molecular dynamics study, J. Mol. Struct.: Theochem., 849, 62-75, (2008)
[2] Alzate-Morales, J. H.; Caballero, J.; Vergara Jague, A.; González Nilo, F. D., Insights into the structural basis of N2 and O6 substituted guanine derivatives as cyclin-dependent kinase 2 (CDK2) inhibitors: prediction of the binding modes and potency of the inhibitors by docking and ONIOM calculations, J. Chem. Inf. Model., 49, 886-899, (2009)
[3] Berendsen, H. J.C.; Postma, J. P.M.; Gunsteren, W. F.V.; Hermans, J., Interaction models for water in relation to protein hydration, Intermol. Forces, 11, 331-342, (1981)
[4] Berendsen, H. J.C.; Postma, J. P.M.; Vangunsteren, W. F.; Dinola, A.; Haak, J. R., Molecular-dynamics with coupling to an external Bath, J. Chem. Phys., 81, 3684-3690, (1984)
[5] Berman, H. M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T. N.; Weissig, H.; Shindyalov, I. N.; Bourne, P. E., The protein data bank, Nucleic Acids Res., 28, 235-242, (2000)
[6] Besson, A.; Dowdy, S. F.; Roberts, J. M., Cdk inhibitors: cell cycle regulators and beyond, Dev. Cell, 14, 159-169, (2008)
[7] Blagden, S.; de Bono, J., Drugging cell cycle kinases in cancer therapy, Curr. Drug Targets, 6, 325-335, (2005)
[8] Bowers, K.J., Chow, E., Xu, H., Dror, R.O., Eastwood, M.P., Gregersen, B.A., Klepeis, J.L., Kolossvary, I., Moraes, M.A., Sacerdoti, F.D., Salmon, J.K., Shan, Y., Shaw, D.E., 2006a. Scalable Algorithms for Molecular Dynamics Simulations on Commodity Clusters, in: Proceedings of the ACM/IEEE Conference on Supercomputing (SC06), New York, NY: IEEE, 2006.
[9] Bowers, K. J.; Dror, R. O.; Shaw, D. E., Zonal methods for the parallel execution of range-limited N-body simulations, J. Comput. Phys., 221, 303-329, (2007)
[10] Bowers, K. J.; Dror, R. O.; Shaw, D. E., The midpoint method for parallelization of particle simulations, J. Chem. Phys., 124, 184109-184111, (2006)
[11] Brandsdal, B. O.; Österberg, F.; Almlöf, M.; Feierberg, I.; Luzhkov, V. B.; Aqvist, J., Free energy calculations and ligand binding, Adv. Protein Chem., 66, 123-158, (2003)
[12] Byth, K. F.; Cooper, N.; Culshaw, J. D.; Heaton, D. W.; Oakes, S. E.; Minshull, C. A.; Norman, R. A.; Pauptit, R. A.; Tucker, J. A.; Breed, J.; Pannifer, A.; Rowsell, S.; Stanway, J. J.; Valentine, A. L.; Thomas, A. P., Imidazo[1,2-b]pyridazines: a potent and selective class of cyclin-dependent kinase inhibitors, Bioorg. Med. Chem. Lett., 14, 2249-2252, (2004)
[13] Canavese, M.; Santo, L.; Raje, N., Cyclin dependent kinases in cancer: potential for therapeutic intervention, Cancer Biol. Ther., 13, 451-457, (2012)
[14] Child, E. S.; Hendrychova, T.; McCague, K.; Futreal, A.; Otyepka, M.; Mann, D. J., A cancer-derived mutation in the pstaire helix of cyclin-dependent kinase 2 alters the stability of cyclin binding, Biochim. Biophys. Acta Mol. Cell Res., 1803, 858-864, (2010)
[15] Clare, P. M.; Poorman, R. A.; Kelley, L. C.; Watenpaugh, K. D.; Bannow, C. A.; Leach, K. L., The cyclin-dependent kinases cdk2 and cdk5 act by a random, anticooperative kinetic mechanism, J. Biol. Chem., 276, 48292-48299, (2001)
[16] Das, D.; Koh, Y.; Tojo, Y.; Ghosh, A. K.; Mitsuya, H., Prediction of potency of protease inhibitors using free energy simulations with polarizable quantum mechanics-based ligand charges and a hybrid water model, J. Chem. Inf. Model., 49, 2851-2862, (2009)
[17] Davies, T. G.; Bentley, J.; Arris, C. E.; Boyle, F. T.; Curtin, N. J.; Endicott, J. A.; Gibson, A. E.; Golding, B. T.; Griffin, R. J.; Hardcastle, I. R.; Jewsbury, P.; Johnson, L. N.; Mesguiche, V.; Newell, D. R.; Noble, M. E.M.; Tucker, J. A.; Wang, L.; Whitfield, H. J., Structure based design of a potent purine-based cyclin-dependent kinase inhibitor, Nat. Struct. Biol., 9, 745-749, (2002)
[18] Davies, T. G.; Pratt, D. J.; Endicott, J. A.; Johnson, L. N.; Noble, M. E., Structure-based design of cyclin-dependent kinase inhibitors, Pharmacol. Ther., 93, 125-133, (2002)
[19] De Azevedo, W. F.; Leclerc, S.; Meijer, L.; Havlicek, L.; Strnad, M; kim, S. H., Inhibition of cyclin-dependent kinases by purine analogues-crystal structure of human cdk2 complexed with roscovitine, Eur. J. Biochem., 243, 518-526, (1997)
[20] De Azevedo, W. F.; Mueller-Dieckman, H. J.; Schulze-Gahmen, U.; Worland, P. J.; Sausville, E. A.; Kim, S. H., Structural basis for specificity and potency of a flavonoid inhibitor of human cdk2, a cell cycle kinase, Proc. Natl. Acad. Sci. USA, 93, 2735-2740, (1996)
[21] De Bondt, H. L.; Rosenblatt, J.; Jancarik, J.; Jones, H. D.; Morgan, D. O.; Kim, S. H., Crystal structure of cyclin-dependent kinase 2, Nature, 363, 595-602, (1993)
[22] Desmond, 2011. Version 3.0 Schrödinger, LLC, New York.
[23] Dessalew, N.; Singh, S. K., 3D-QSAR comfa and comsia study on benzodipyrazoles as cyclin dependent kinase 2 inhibitors, Med. Chem., 4, 313-321, (2008)
[24] Dixon, J. S.; Blaney, J. M., Docking: predicting the structure and binding affinity of ligand-receptor complexes, (Martin, Y. C.; Willet, P., Designing Bioactive Molecules: Three-Dimensional Techniques and Applications, (1998), American Chemical Society Washington DC), 175-198
[25] Dror, O.; Shulman-Peleg, A.; Nussinov, R.; Wolfson, H. J., Predicting molecular interactions in silico: I. A guide to pharmacophore identification and its applications to drug design, Curr. Med. Chem., 11, 71-90, (2004)
[26] Echalier, A.; Endicott, J. A.; Noble, M. E.M., Recent developments in cyclin-dependent kinase biochemical and structural studies, Biochim. Biophys. Acta Proteins Proteomics, 1804, 511-519, (2010)
[27] Eldridge, M. D.; Murray, C. W.; Auton, T. R.; Paolini, G. V.; Mee, R. P., Empirical scoring functions: I. the development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes, J. Comput. Aided. Mol. Des., 11, 425-445, (1997)
[28] Englebienne, P.; Fiaux, H.; Kuntzm, D. A.; Corbeil, C. R.; Gerber-Lemaire, S.; Rose, D. R.; Moitessier, N., Evaluation of docking programs for predicting binding of golgi alpha-mannosidase II inhibitors: a comparison with crystallography, Proteins, 69, 160-176, (2007)
[29] Essmann, U.; Perera, L.; Berkowitz, M. L.; Darden, T.; Lee, H.; Pedersen, L. G., A smooth particle meshes ewald method, J. Chem. Phys., 103, 8577-8593, (1995)
[30] Friesner, R. A.; Murphy, R. B.; Repasky, M. P.; Frye, L. L.; Greenwood, J. R.; Halgren, T. A; Sanschagrin, P. C.; Mainz, D. T., Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes, J. Med. Chem., 49, 6177-6196, (2006)
[31] Friesner, R. A.; Banks, J. L.; Murphy, R. B.; Halgren, T. A.; Klicic, J. J.; Mainz, D. T.; Repasky, M. P.; Knoll, E. H.; Shelley, M.; Perry, J. K.; Shaw, D. E.; Francis, P.; Shenkin, P. S., Glide: a new approach for rapid, accurate docking and scoring. 1. method and assessment of docking accuracy, J. Med. Chem., 47, 1739-1749, (2004)
[32] Furet, P., X-ray crystallographic studies of CDK2, a basis for cyclin-dependent kinase inhibitor design in anti-cancer drug research, Curr. Med. Chem. Anticancer Agents, 3, 15-23, (2003)
[33] Furet, P.; Meyer, T.; Mittl, P.; Fretz, H., Identification of cylin-dependent kinase 1 inhibitors of a new chemical type by structure-based design and database searching, J. Comput. Aided Mol. Des., 15, 489-495, (2001)
[34] Glide, 2011. version 5.7, Schrödinger, LLC, New York.
[35] Griffin, R.; Henderson, A.; Curtin, N.; Echalier, A.; Endicott, J.; Hardcastle, I.; Newell, D.; Noble, M.; Wang, L.; Golding, B., Searching for cyclin-dependent kinase inhibitors using a new variant of the cope elimination, J. Am. Chem. Soc., 128, 6012-6013, (2006)
[36] Guimarães, C. R.; Cardozo, M., MM-GB/SA rescoring of docking poses in structure-based lead optimization, J. Chem. Inf. Model., 48, 958-970, (2008)
[37] Halgren, T. A.; Murphy, R. B.; Friesner, R. A.; Beard, H. S.; Frye, L. L.; Pollard, W. T.; Banks, J. L., Glide: a new approach for rapid, accurate docking and scoring. 2. enrichment factors in database screening, J. Med. Chem., 47, 1750-1759, (2004)
[38] Hayes, M. J.; Stein, M.; Weiser, J., Accurate calculations of ligand binding free energies, J. Phys. Chem. A, 108, 3572-3580, (2004)
[39] Hou, T.; Wang, J.; Li, Y.; Wang, W., Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. the accuracy of binding free energy calculations based on molecular dynamics simulations, J. Chem. Inf. Model, 51, 69-82, (2011)
[40] Huo, S.; Wang, J.; Cieplak, P.; Kollman, P. A.; Kuntz, I. D., Molecular dynamics and free energy analyses of cathepsin D-inhibitor interactions: insight into structure-based ligand design, J. Med. Chem., 45, 1412-1419, (2002)
[41] Jiang, Y.; Zou, J.; Gui, C., Study of a ligand complexed with cdk2/cdk4 by computer simulation, J. Mol. Model., 11, 509-515, (2005)
[42] Johnson, L. N., Protein kinase inhibitors: contributions from structure to clinical compounds, Q. Rev. Biophys., 42, 1-40, (2009)
[43] Jorgensen, W. L.; Maxwell, D. S.; Tirado-Rives, J., Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids, J. Am. Chem. Soc., 118, 11225-11236, (1996)
[44] Kaminski, G. A.; Friesner, R. A.; Tirado-Rives, J.; Jorgensen, W. L., Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides, J. Phys. Chem. B., 105, 6474-6487, (2001)
[45] Karplus, M.; McCammon, J. A., Molecular dynamics simulations of biomolecules, Nat. Struct. Biol., 9, 646-652, (2002)
[46] Kitchen, D. B.; Decornez, H.; Furr, J. R.; Bajorath, J., Docking and scoring in virtual screening for drug discovery: methods and applications, Nat. Rev. Drug Discov., 3, (2004), 935-949
[47] Koh, Y.; Das, D.; Leschenko, S.; Nakata, H.; Ogata-Aoki, H.; Amano, M.; Nakayama, M.; Ghosh, A. K.; Mitsuya, H., GRL-02031, a novel nonpeptidic protease inhibitor (PI) containing a stereochemically defined fused cyclopentanyltetrahydrofuran potent against multi-PI-resistant human immunodeficiency virus type 1 in vitro, Antimicrob. Agents Chemother., 53, 997-1006, (2009)
[48] Kroemer, R. T.; Vulpetti, A.; McDonald, J. J.; Rohrer, D. C.; Trosset, J. Y.; Giordanetto, F.; Cotesta, S.; McMartin, C.; Kihlén, M.; Stouten, P. F., Assessment of docking poses: interactions-based accuracy classification (IBAC) versus crystal structure deviations, J. Chem. Inf. Comput. Sci., 44, 871-881, (2004)
[49] Kumar, N.; Hendriks, B. S.; Janes, K. A.; de Graaf, D.; Lauffenburger, D. A., Applying computational modeling to drug discovery and development, Drug Discov. Today, 11, 806-811, (2006)
[50] Lee, J.; Choi, H.; Kim, K. H.; Jeong, S.; Park, J. W.; Baek, C. S.; Lee, S. H., Synthesis and biological evaluation of 3,5-diaminoindazoles as cyclin-dependent kinase inhibitors, Bioorg. Med. Chem. Lett., 18, 2292-2295, (2008)
[51] Legraverend, M.; Tunnah, P.; Noble, M.; Ducrot, P.; Ludwig, O.; Grierson, D. S.; Leost, M.; Meijer, L.; Endicott, J., Cyclin-dependent kinase inhibition by new C-2 alkynylated purine derivatives and molecular structure of a CDK2-inhibitor complex, J. Med. Chem., 43, 1282-1292, (2000)
[52] LigPrep, 2011. Version 2.5, Schrödinger, LLC, New York.
[53] Lin, J. H.; Perryman, A. L.; Schames, J. R.; McCammon, J. A., Computational drug design accommodating receptor flexibility: the relaxed complex scheme, J. Am. Chem. Soc., 124, 5632-5633, (2002)
[54] Lyne, P. D.; Lamb, M. L.; Saeh, J. C., Accurate prediction of the relative potencies of members of a series of kinase inhibitors using molecular docking and MM-GBSA scoring, J. Med. Chem, 49, 4805-4808, (2006)
[55] Malumbres, M.; Barbacid, M., Cell cycle, cdks and cancer: a changing paradigm, Nat. Rev. Cancer, 9, 153-166, (2009)
[56] Mani, S.; Wang, C.; Wu, K.; Francis, R.; Pestell, R., Cyclin-dependent kinase inhibitors: novel anticancer agents, Exp. Opin. Invest. Drugs, 9, 1849-1870, (2000)
[57] Martyna, G. J.; Klein, M. L.; Tuckerman, M., Nose-Hoover chains-the canonical ensemble via continuous dynamics, J. Chem. Phys., 97, 2635-2643, (1992)
[58] Martyna, G. J.; Tobias, D. J.; Klein, M. L., Constant-pressure molecular dynamics algorithms, J. Chem. Phys., 101, 4177-4189, (1994)
[59] McGaughey, G. B.; Gagne, M.; Rappe, A. K., π-stacking interactions alive and well in proteins, J. Biol. Chem., 273, 15458-15463, (1998)
[60] Meijer, L.; Raymond, E., Roscovitine and other purines as kinase inhibitors. from starfish oocytes to clinical trials, Acc. Chem. Res., 36, 417-425, (2003)
[61] Morgan, D. O., Cyclin-dependent kinases: engines, clocks, and microprocessors, Annu. Rev. Cell Dev. Biol., 13, 261-291, (1997)
[62] Norberg, J.; Nilsson, L., Advances in bimolecular simulations: methodology and recent applications, Q. Rev. Biophys., 36, 257-306, (2003)
[63] Onodera, K.; Satou, K.; Hirota, H., Evaluations of molecular docking programs for virtual screening, J. Chem. Inf. Model., 47, 1609-1618, (2007)
[64] Otyepka, M; Krystof, V; Havlicek, L; Siglerova, V; Strnad, M; Koca, J., Docking-based development of purine-like inhibitors of cyclin-dependent kinase2, J. Med. Chem., 43, 2506-2513, (2000)
[65] Perola, E.; Walters, W. P.; Charifson, P. S., A detailed comparison of current docking and scoring methods on systems of pharmaceutical relevance, Proteins, 56, 235-249, (2004)
[66] Prime, 2011. Version 3.0 Schrödinger, LLC, New York.
[67] Rapp, C.; Kalyanaraman, C.; Schiffmiller, A.; Schoenbrun, E. L.; Jacobson, M. P., A molecular mechanics approach to modeling protein-ligand interactions: relative binding affinities in congeneric series, J. Chem. Inf. Model., 51, 2082-2089, (2011)
[68] Richardson, C. M.; Williamson, D. S.; Parratt, M. J.; Borgognoni, J.; Cansfield, A. D.; Dokurno, P.; Francis, G. L.; Howes, R.; Moore, J. D.; Murray, J. B.; Robertson, A.; Surgenor, A. E.; Torrance, C. J., Triazolo[1,5-a]pyrimidines as novel CDK2 inhibitors: protein structure-guided design and SAR, Bioorg. Med. Chem. Lett., 16, 1353-1357, (2006)
[69] Rosania, G.R., Chang, Y.T., 2000. Targeting hyperproliferative disorders with cyclin dependent kinase inhibitors. Exp. Opin. Ther. Patents 10, 215-230.
[70] Russo, A. A.; Jeffrey, P. D.; Patten, A. K.; Massagué, J.; Pavletich, N. P., Crystal structure of the p27kip1 cyclin-dependent-kinase inhibitor bound to the cyclin A-cdk2 complex, Nature, 382, 325-331, (1996)
[71] Ryckaert, J. P.; Ciccotti, G.; Berendsen, H. J.C., Numerical-integration of Cartesian equations of motion of a system with constraints-molecular dynamics of N-alkanes, J. Comput. Phys., 23, 327-341, (1977)
[72] Schames, J. R.; Henchman, R. H.; Siegel, J. S.; Sotriffer, C. A.; Ni, H.; McCammon, J. A., Discovery of a novel binding trench in HIV integrase, J. Med. Chem., 47, 1879-1881, (2004)
[73] Schneidman-Duhovny, D.; Nussinov, R.; Wolfson, H. J., Predicting molecular interactions in silico: II. protein-protein and protein-drug docking, Curr. Med. Chem., 11, 91-107, (2004)
[74] Shaw, D. E., A fast, scalable method for the parallel evaluation of distance-limited pairwise particle interactions, J. Comput. Chem., 26, 1318-1328, (2005)
[75] Singh, S. K.; Tripathi, S. K.; Dessalew, N.; Singh, P., Cyclin dependent kinase as significant target for cancer treatment, Curr. Cancer Ther. Rev., 8, 225-235, (2012)
[76] Sinnokrot, M. O.; Valeev, E. F.; Sherrill, C. D., Estimates of the ab initio limit for pi-pi interactions: the benzene dimer, J. Am. Chem. Soc., 124, 10887-10893, (2002)
[77] Talele, T. T.; McLaughlin, M. L., Molecular docking/dynamics studies of aurora A kinase inhibitors, J. Mol. Graph. Model., 26, 1213-1222, (2008)
[78] Tetsu, O.; McCormick, F., Proliferation of cancer cells despite cdk2 inhibition, Cancer Cell, 3, 233-245, (2003)
[79] Tripathi, S. K.; Singh, S. K.; Singh, P.; Chellaperumal, P.; Reddy, K. K.; Selvaraj, C., Exploring the selectivity of a ligand complex with CDK2/CDK1: a molecular dynamics simulation approach, J. Mol. Recognition, 25, 504-512, (2012)
[80] Vadivelan, S.; Sinha, B. N.; Irudayam, S. J.; Jagarlapudi, S. A.R. P., Virtual screening studies to design potent cdk2-cyclin a inhibitors, J. Chem. Inf. Model., 47, 1526-1535, (2007)
[81] Wang, J.; Dixon, R.; Kollman, P. A., Ranking ligand binding affinities with avidin: a molecular dynamics-based interaction energy study, Proteins, 34, 69-81, (1999)
[82] Zhou, Z.; Felts, A. K.; Friesner, R. A.; Levy, R. M., Comparative performance of several flexible docking programs and scoring functions: enrichment studies for a diverse set of pharmaceutically relevant targets, J. Chem. Inf. Model., 47, 1599-1608, (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.