×

zbMATH — the first resource for mathematics

Phase space reconstruction for non-uniformly sampled noisy time series. (English) Zbl 1396.86011
Summary: Analyzing data from paleoclimate archives such as tree rings or lake sediments offers the opportunity of inferring information on past climate variability. Often, such data sets are univariate and a proper reconstruction of the system’s higher-dimensional phase space can be crucial for further analyses. In this study, we systematically compare the methods of time delay embedding and differential embedding for phase space reconstruction. Differential embedding relates the system’s higher-dimensional coordinates to the derivatives of the measured time series. For implementation, this requires robust and efficient algorithms to estimate derivatives from noisy and possibly non-uniformly sampled data. For this purpose, we consider several approaches: (i) central differences adapted to irregular sampling, (ii) a generalized version of discrete Legendre coordinates, and (iii) the concept of Moving Taylor Bayesian Regression. We evaluate the performance of differential and time delay embedding by studying two paradigmatic model systems – the Lorenz and the Rössler system. More precisely, we compare geometric properties of the reconstructed attractors to those of the original attractors by applying recurrence network analysis. Finally, we demonstrate the potential and the limitations of using the different phase space reconstruction methods in combination with windowed recurrence network analysis for inferring information about past climate variability. This is done by analyzing two well-studied paleoclimate data sets from Ecuador and Mexico. We find that studying the robustness of the results when varying the analysis parameters is an unavoidable step in order to make well-grounded statements on climate variability and to judge whether a data set is suitable for this kind of analysis.{
©2018 American Institute of Physics}

MSC:
86A32 Geostatistics
62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
PDF BibTeX Cite
Full Text: DOI
References:
[1] Marwan, N.; Romano, M. C.; Thiel, M.; Kurths, J., Recurrence plots for the analysis of complex systems, Phys. Rep., 438, 237-329, (2007)
[2] Donges, J. F.; Donner, R. V.; Rehfeld, K.; Marwan, N.; Trauth, M. H.; Kurths, J., Identification of dynamical transitions in marine palaeoclimate records by recurrence network analysis, Nonlinear Process. Geophys., 18, 545-562, (2011)
[3] Rehfeld, K.; Marwan, N.; Heitzig, J.; Kurths, J., Comparison of correlation analysis techniques for irregularly sampled time series, Nonlinear Process. Geophys., 18, 389-404, (2011)
[4] Donges, J. F.; Donner, R. V.; Marwan, N.; Breitenbach, S. F. M.; Rehfeld, K.; Kurths, J., Non-linear regime shifts in Holocene Asian monsoon variability: Potential impacts on cultural change and migratory patterns, Clim. Past, 11, 709-741, (2015)
[5] Schleussner, C.-F.; Donges, J. F.; Donner, R. V.; Schellnhuber, H. J., Armed-conflict risks enhanced by climate-related disasters in ethnically fractionalized countries, Proc. Natl. Acad. Sci., 113, 9216-9221, (2016)
[6] Kennett, D. J.; Breitenbach, S. F. M.; Aquino, V. V.; Asmerom, Y.; Awe, J.; Baldini, J. U. L.; Bartlein, P.; Culleton, B. J.; Ebert, C.; Jazwa, C., Development and disintegration of Maya political systems in response to climate change, Science, 338, 788-791, (2012)
[7] Carleton, W. C.; Campbell, D.; Collard, M., Increasing temperature exacerbated classic maya conflict over the long term, Quat. Sci. Rev., 163, 209-218, (2017)
[8] Whitney, H., Differentiable manifolds, Ann. Math., 37, 645-680, (1936) · JFM 62.1454.01
[9] Takens, F., Detecting Strange Attractors in Turbulence, 366-381, (1980), Springer Science and Business Media
[10] Mañé, R., On the Dimension of the Compact Invariant Sets of Certain Non-linear Maps, 230, (1981), Springer Verlag: Springer Verlag, Berlin
[11] Packard, N. H.; Crutchfield, J. P.; Farmer, J. D.; Shaw, R. S., Geometry from a time series, Phys. Rev. Lett., 45, 712-716, (1980)
[12] Sauer, T.; Yorke, J. A.; Casdagli, M., Embedology, J. Stat. Phys., 65, 579-616, (1991) · Zbl 0943.37506
[13] Sauer, T., Reconstruction of dynamical systems from interspike intervals, Phys. Rev. Lett., 72, 3811-3814, (1994)
[14] Huke, J. P.; Broomhead, D. S., Embedding theorems for non-uniformly sampled dynamical systems, Nonlinearity, 20, 2205, (2007) · Zbl 1128.37056
[15] Casdagli, M.; Eubank, S.; Farmer, J.; Gibson, J., State space reconstruction in the presence of noise, Physica D, 51, 52-98, (1991) · Zbl 0736.62075
[16] Kantz, H.; Schreiber, T., Nonlinear Time Series Analysis, (2004), Cambridge University Press · Zbl 1050.62093
[17] Abarbanel, H. D. I.; Brown, R.; Sidorowich, J. J.; Tsimring, L. S., The analysis of observed chaotic data in physical systems, Rev. Mod. Phys., 65, 1331-1392, (1993)
[18] Fraser, A. M.; Swinney, H. L., Independent coordinates for strange attractors from mutual information, Phys. Rev. A, 33, 1134-1140, (1986) · Zbl 1184.37027
[19] Gibson, J. F.; Farmer, J. D.; Casdagli, M.; Eubank, S., An analytic approach to practical phase space reconstruction, Physica D, 57, 1-30, (1992) · Zbl 0761.62118
[20] Kennel, M. B.; Brown, R.; Abarbanel, H. D. I., Determining embedding dimension for phase-space reconstruction using a geometrical construction, Phys. Rev. A, 45, 3403-3411, (1992)
[21] Hirata, Y.; Aihara, K., Dimensionless embedding for nonlinear time series analysis, Phys. Rev. E, 96, 032219, (2017)
[22] Ozken, I.; Eroglu, D.; Stemler, T.; Marwan, N.; Bagci, G. B.; Kurths, J., Transformation-cost time-series method for analyzing irregularly sampled data, Phys. Rev. E, 91, 062911, (2015)
[23] Rehfeld, K.; Kurths, J., Similarity estimators for irregular and age-uncertain time series, Clim. Past, 10, 107-122, (2014)
[24] Heitzig, J., Moving Taylor Bayesian Regression for nonparametric multidimensional function estimation with possibly correlated errors, SIAM J. Sci. Comput., 35, A1928-A1950, (2013) · Zbl 1273.62087
[25] Donner, R. V.; Zou, Y.; Donges, J. F.; Marwan, N.; Kurths, J., Recurrence networks—a novel paradigm for nonlinear time series analysis, New J. Phys., 12, 033025, (2010) · Zbl 1360.90045
[26] Donner, R. V.; Small, M.; Donges, J. F.; Marwan, N.; Zou, Y.; Xiang, R.; Kurths, J., Recurrence-based time series analysis by means of complex network methods, Int. J. Bifurcat. Chaos, 21, 1019-1046, (2011) · Zbl 1247.37086
[27] Donner, R. V.; Zou, Y.; Donges, J. F.; Marwan, N.; Kurths, J., Ambiguities in recurrence-based complex network representations of time series, Phys. Rev. E, 81, 015101, (2010)
[28] Donner, R. V.; Heitzig, J.; Donges, J. F.; Zou, Y.; Marwan, N.; Kurths, J., The geometry of chaotic dynamics—a complex network perspective, Eur. Phys. J. B, 84, 653-672, (2011)
[29] Lorenz, E. N., Deterministic nonperiodic flow, J. Atmos. Sci., 20, 130-141, (1963) · Zbl 1417.37129
[30] Rössler, O., An equation for continuous chaos, Phys. Lett. A, 57, 397-398, (1976) · Zbl 1371.37062
[31] Xiang, R.; Zhang, J.; Xu, X.-K.; Small, M., Multiscale characterization of recurrence-based phase space networks constructed from time series, Chaos, 22, 013107, (2012)
[32] Jacob, R.; Harikrishnan, K.; Misra, R.; Ambika, G., Characterization of chaotic attractors under noise: A recurrence network perspective, Commun. Nonlinear Sci. Numer. Simul., 41, 32-47, (2016)
[33] Moy, C. M.; Seltzer, G. O.; Rodbell, D. T.; Anderson, D. M., Variability of El Niño/Southern oscillation activity at millennial timescales during the holocene epoch, Nature, 420, 162, (2002)
[34] Lachniet, M. S.; Bernal, J. P.; Asmerom, Y.; Polyak, V.; Piperno, D., A 2400 yr Mesoamerican rainfall reconstruction links climate and cultural change, Geology, 40, 259-262, (2012)
[35] Schreiber, T.; Schmitz, A., Surrogate time series, Physica D, 142, 346-382, (2000) · Zbl 1098.62551
[36] Donges, J. F.; Donner, R. V.; Trauth, M. H.; Marwan, N.; Schellnhuber, H.-J.; Kurths, J., Nonlinear detection of paleoclimate-variability transitions possibly related to human evolution, Proc. Natl. Acad. Sci., 108, 20422-20427, (2011)
[37] Novello, V. F.; Vuille, M.; Cruz, F. W.; Stríis, N. M.; de Paula, M. S.; Edwards, R. L.; Cheng, H.; Karmann, I.; Jaqueto, P. F.; Trindade, R. I. F., Centennial-scale solar forcing of the South American monsoon system recorded in stalagmites, Sci. Rep., 6, 24762, (2016)
[38] Bianchi, G. G.; McCave, I. N., Holocene periodicity in North Atlantic climate and deep-ocean flow south of iceland, Nature, 397, 515, (1999)
[39] B”untgen, U.; Tegel, W.; Nicolussi, K.; McCormick, M.; Frank, D.; Trouet, V.; Kaplan, J. O.; Herzig, F.; Heussner, K.-U.; Wanner, H.; Luterbacher, J.; Esper, J., 2500 years of European climate variability and human susceptibility, Science, 331, 578, (2011)
[40] Vuille, M.; Burns, S. J.; Taylor, B. L.; Cruz, F. W.; Bird, B. W.; Abbott, M. B.; Kanner, L. C.; Cheng, H.; Novello, V. F., A review of the South American monsoon history as recorded in stable isotopic proxies over the past two millennia, Clim. Past, 8, 1309-1321, (2012)
[41] Eroglu, D.; McRobie, F. H.; Ozken, I.; Stemler, T.; Wyrwoll, K.-H.; Breitenbach, S. F. M.; Marwan, N.; Kurths, J., See-saw relationship of the Holocene East Asian-Australian summer monsoon, Nat. Commun., 7, 12929, (2016)
[42] Goswami, B.; Boers, N.; Rheinwalt, A.; Marwan, N.; Heitzig, J.; Breitenbach, S. F. M.; Kurths, J., Abrupt transitions in time series with uncertainties, Nat. Commun., 9, 48, (2018)
[43] Donges, J. F.; Heitzig, J.; Beronov, B.; Wiedermann, M.; Runge, J.; Feng, Q. Y.; Tupikina, L.; Stolbova, V.; Donner, R. V.; Marwan, N., Unified functional network and nonlinear time series analysis for complex systems science: The pyunicorn package, Chaos, 25, 113101, (2015) · Zbl 1377.62021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.