zbMATH — the first resource for mathematics

Arbogast: higher order automatic differentiation for special functions with modular C. (English) Zbl 06949118
Summary: This high-level toolbox for the calculus with Taylor polynomials is named after L. F. A. Arbogast (1759–1803), a French mathematician from Strasbourg (Alsace), for his pioneering work in derivation calculus. is based on a well-defined extension of the C programming language, Modular C, and places itself between tools that proceed by operator overloading on one side and by rewriting, on the other. The approach is best described as contextualization of C code because it permits the programmer to place his code in different contexts – usual math or automatic differentiation (AD) – to reinterpret it as a usual C function or as a differential operator. Because of the type generic features of modern C, all specializations can be delegated to the compiler. The higher order AD with is exemplified on families of functions of mathematical physics and on models for complex dielectric functions used in optics.

41A58 Series expansions (e.g., Taylor, Lidstone series, but not Fourier series)
68N15 Theory of programming languages
68N19 Other programming paradigms (object-oriented, sequential, concurrent, automatic, etc.)
Full Text: DOI
[1] Abate, J.; Bischof, C.; Roh, L.; Carle, A., algorithms and design for a second-order automatic differentiation module, 149-155, (1997) · Zbl 0923.68068
[2] Abramowitz, M.; Stegun, I. A., Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, (1964), Dover Publications, New York · Zbl 0171.38503
[3] Agrawal, G., Nonlinear Fiber Optics, (2012), Academic Press, San Diego, CA
[4] Du calcul des dérivations, Imprimerie de Levrault frères, Strasbourg, An VIII (1800)
[5] Berz, M., Modern Map Methods in Particle Beam Physics, (1999), Academic Press
[6] Bilasse, M.; Charpentier, I.; Daya, E. M.; Koutsawa, Y., A generic approach for the solution of nonlinear residual equations. part II: homotopy and complex nonlinear eigenvalue method, Comput. Method. Appl. Mech. Eng., 198, 3999-4004, (2009) · Zbl 1231.74133
[7] Bischof, C. H.; Roh, L.; Mauer, A., ADIC—an extensible automatic differentiation tool for ANSI-C, Softw.–Pract. Exp., 27, 1427-1456, (1997)
[8] Charpentier, I., on higher-order differentiation in nonlinear mechanics, Optim. Methods Softw., 27, 221-232, (2012) · Zbl 1242.41031
[9] Charpentier, I., optimized higher-order automatic differentiation for the faddeeva function, Comput. Phys. Comm., 205, 132-137, (2016) · Zbl 1378.65067
[10] Charpentier, I.; Cochelin, B., towards a full higher-order AD continuation and bifurcation framework, Optim. Method. Softw., (2018) · Zbl 06949117
[11] Charpentier, I.; Dal Cappello, C., higher-order automatic differentiation of mathematical functions, Comput. Phys. Commun., 189, 66-71, (2015) · Zbl 1344.65029
[12] Charpentier, I.; Utke, J., fast higher-order derivative tensors with rapsodia, Optim. Method. Softw., 24, 1-14, (2009) · Zbl 1166.65009
[13] efficient higher-order derivatives of the hypergeometric functionAdvances in Automatic DifferentiationSpringerBerlin2008127137
[14] Arbogast—Origine d’un outil de dérivation automatique, Research Report RR-8911, INRIA, 2016. Available at
[15] Christianson, B., reverse accumulation and attractive fixed points, Optim. Methods Softw., 3, 311-326, (1994)
[16] Craik, A. D.D., prehistory of faà di Bruno’s formula, Am. Math. Monthly, 112, 119-130, (2005) · Zbl 1088.01008
[17] ME755 special functions, Engineering Courses online, University of Waterloo, 2004. Available at
[18] Ehrenreich, H.; Philipp, H. R., optical properties of ag and cu, Phys. Rev., 128, 1622-1629, (1962)
[19] Estrin, G., Organization of computer systems—the fixed plus variable structure computer, 33-40
[20] Arbogast, de l’Institut national de France, 2016. Available at
[21] Griewank, A.; Walther, A., Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation, (2008), Society for Industrial Mathematics, Philadelphia, PA · Zbl 1159.65026
[22] Griewank, A.; Utke, J.; Walther, A., evaluating higher derivative tensors by forward propagation of univariate Taylor series, Math. Comput., 69, 1117-1131, (2000) · Zbl 0952.65028
[23] Modular C, Research Report RR-8751, INRIA, 2015
[24] Horner, W. G., A new method of solving numerical equations of all orders, by continuous approximation, Philos. Trans. R. Soc. Lond., 109, 308-335, (1819)
[25] Johnson, W. P., the curious history of fa di Bruno’s formula, Amer. Math. Monthly, 109, 217-234, (2002) · Zbl 1024.01010
[26] Programming languages—C, cor. 1:2012 ed., ISO/IEC 9899, ISO, 2011
[27] Karatsuba, A. A.; Ofman, Y. P., multiplication of multidigit numbers on automata, Sov. Phys. Dokl., 7, 595-596, (1963)
[28] Kaufman, L., eigenvalue problems in fiber optic design, SIAM J. Matrix Anal. Appl., 28, 105-117, (2006) · Zbl 1104.65312
[29] Kaufman, L., calculating dispersion derivatives in fiber-optic design, J. Lightwave Technol., 25, 811-819, (2007)
[30] Kaufman, L.; Bang, S. M.; Heacook, B.; Landon, W.; Savacool, D.; Woronekin, N., designing optical fibers: Fitting the derivatives of a nonlinear PDE-eigenvalue problem, Am. J. Comput. Math., 2, 321-330, (2012)
[31] Lenahan, T. A., calculation of modes in an optical fiber using the finite element method and EISPACK, Bell Syst. Tech. J., 62, 2663-2694, (1983)
[32] Makino, K.; Berz, M., COSY INFINITY version 9, Nucl. Instrum. Methods Phys. Res. A, 558, 346-350, (2006)
[33] Mores, J. A.; Malheiros-Silveira, G. N.; Fragnito, H. L.; Hernández-Figueroa, H. E., efficient calculation of higher-order optical waveguide dispersion, Opt. Express, 18, 19522-19531, (2010)
[34] NIST Digital Library of Mathematical Functions, 2016. Available at
[35] Rakić, A. D.; Djurišic, A. B.; Elazar, J. M.; Majewski, M. L., optical properties of metallic films for vertical-cavity optoelectronic devices, Appl. Opt., 37, 5271-5283, (1998)
[36] Sellmeier, W., zur erklärung der abnormen farbenfolge im spectrum einiger substanzen, Ann. Phys. (Berlin), 219, 272-282, (1871)
[37] monthly since 2000. Available at
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.