Berndt, Rolf; Böcherer, Siegfried Jacobi forms and discrete series representations of the Jacobi group. (English) Zbl 0695.10024 Math. Z. 204, No. 1, 13-44 (1990). The paper under review is a bridge between the classical way of dealing with Jacobi forms and the general representation-theoretical way of looking at automorphic forms. The authors study the Jacobi group \(G^ J=\mathrm{SL}_ 2(\mathbb R)\ltimes H(\mathbb R)\), which is an example of a non- reductive group. By virtue of the non-commutative structure of the algebra of invariant differential operators this case is more complicated than the theory for reductive groups. Nevertheless the authors can derive results similar to the general representation theory of \(\mathrm{SL}_ 2\). Considering \(\Gamma^ J=\mathrm{SL}_ 2(\mathbb Z)^ 2\ltimes \mathbb Z^ 2\) Jacobi forms can be defined as functions on \(G^ J\). The cusp condition can be described by introducing a convenient generalization of cuspidal subgroups from \(\mathrm{SL}_ 2\) to \(G^ J\). Here the cusp \(i\infty\) of the modular group \(\mathrm{SL}_ 2(\mathbb Z)\) degenerates under the influence of the Heisenberg group. The subspace \({\mathcal H}=L^ 2_ 0(\Gamma^ J\setminus G^ J)\) of \(L^ 2(\Gamma^ J\setminus G^ J)\) is given by the cusp condition. The right regular representation on \({\mathcal H}\) has a discrete spectrum. Finally a duality theorem is derived, which connects the multiplicities of discrete series representations with dimensions of spaces of Jacobi cusp forms. Reviewer: Aloys Krieg Cited in 4 ReviewsCited in 20 Documents MSC: 11F50 Jacobi forms 11F55 Other groups and their modular and automorphic forms (several variables) 22E45 Representations of Lie and linear algebraic groups over real fields: analytic methods Keywords:Jacobi forms; Jacobi group; non-reductive group; invariant differential operators; duality theorem; multiplicities of discrete series representations; dimensions of spaces of Jacobi cusp forms PDF BibTeX XML Cite \textit{R. Berndt} and \textit{S. Böcherer}, Math. Z. 204, No. 1, 13--44 (1990; Zbl 0695.10024) Full Text: DOI EuDML References: [1] Berndt, R.: Some differential operators in the theory of Jacobi forms. Bures-sur-Yvette: IHES prepublication 1984 [2] Berndt, R.: Die Jacobigruppe und die Wärmeleitungsgleichung. Math. Z.191, 351–361 (1986) · Zbl 0588.10025 [3] Berndt, R.: Formes de Jacobi et quelques éléments de la théorie des représentations du groupe de Jacobi. Astérisque147–148, 265–269 (1987) [4] Berndt, R.: Some special features of the Jacobi group. Proceeding of the International Conference on Number Theory, Quebec 1987 · Zbl 0623.10015 [5] Borel, A. Introduction to automorphic forms. In: Proc. Symp. Pure Math. vol. 9, American Mathematical Society, Providence 1966 · Zbl 0191.09601 [6] Borho, W.: Primitive und vollprimitive Ideale in der Einhüllenden vonsl(5, \(\mathbb{C}\)). J. Algebra43, 619–654 (1976) · Zbl 0346.17013 [7] Eichler, M.: Eine neue Klasse von Modulformen und Modulfunktionen I, II. Abh. Math. Semin. Univ. Hamb.55, 53–68 (1985),57, 57–68 (1987) · Zbl 0564.10033 [8] Eichler, M., Zagier, D.: The theory of Jacobi forms. (Prog. Math. vol. 55) Basel: Birkhäuser 1985 · Zbl 0554.10018 [9] Gelbart, S.: Automorphic forms on Adele groups. Ann. Math. Stud.83, 1975. · Zbl 0329.10018 [10] Gel’fand, I.M., Graev, M.I., Pyatetskii-Shapiro, I.I. Representation theory and automorphic functions, Philadelphia: Saunders 1969 [11] Godement, R.: The Decomposition ofL 2(G/{\(\Gamma\)}) for Г=SL 2(\(\mathbb{Z}\)). And: The spectral decomposition of Cusp-forms. In: Proc. Symp. Pure Math. vol. 9, American Mathematical Society, Providence 1966 [12] Igusa, I.-J.: Theta functions. Berlin Heidelberg New York: Springer 1972 · Zbl 0251.14016 [13] Kirillov, A.A.: Elements of the theory of representations. Berlin Heidelberg New York: Springer 1976 · Zbl 0342.22001 [14] Klingen, H.: Metrisierungstheorie und Jacobiformen. Abh. Math. Semin. Univ. Hamb.57, 165–178 (1987) · Zbl 0616.10021 [15] Kramer, J.: Jacobiformen und thetareihen. Manuscr. Math.54, 279–322 (1986) · Zbl 0588.10024 [16] Lang, S.:SL 2(\(\mathbb{R}\)). Reading: Addison-Wesley 1976 [17] Maass, H.: Siegel’s modular forms and Dirichlet series. SLN 216, Berlin Heidelberg New York: Springer 1971 · Zbl 0224.10028 [18] Mackey, W.: Unitary representations of group extensions I. Acta Math.99, 265–311 (1958) · Zbl 0082.11301 [19] Murase, A.:L-Functions attached to Jacobi forms of degreen. I. The basic ideality. J. Reine Angew. Math.401, 122–156 (1989) · Zbl 0671.10023 [20] Pyatetskii-Shapiro, I.: Automorphic functions and the geometry of classical domains. New York London Paris: Gordon & Breach 1969 [21] Satake, I.: Fock representations and Theta-functions. In: Ahlfors, L.V. (ed.) Advances in the theory of Riemann surfaces. Proc. of the 1969 Stony Brook Conf. Ann. Math. Studies66, 393–405 (1971) [22] Satake, I.: A group extension and its unitary representations. (in Japanese), Sugako21, 241–253 (1969) [23] Skoruppa, N.-P.: Über den Zusammenhang zwischen Jacobiformen und Modulformen halbganzen Gewichts. Bonn. Math. Schr. 159, Bonn 1985 [24] Skoruppa, N.-P., Zagier, D.: A trace formula for Jacobi forms. MPI (preprint 87-42), Bonn 1987 [25] Yamazaki, T.: Jacobi forms and a Maass relation for Eisenstein series. J. Fac. Sci., Univ. Tokyo, Sect. I.A.33 (1986) · Zbl 0608.10027 [26] Ziegler, C.: Jacobi forms of higher degree. Dissertation, Heidelberg 1988 · Zbl 0661.10034 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.