Alekseevskij, D. V. Maximally homogeneous G-structures and filtered Lie algebras. (English. Russian original) Zbl 0695.17011 Sov. Math., Dokl. 37, No. 2, 381-384 (1988); translation from Dokl. Akad. Nauk SSSR 299, No. 3, 521-525 (1988). The author obtains a description of filtered Lie algebras \({\mathfrak L}\) whose graduation equals the full Cartan extension of the Lie algebra \({\mathfrak g}\), under the additional assumption that \({\mathfrak L}\) satisfies a generalized Kantor-Tanaka reductivity condition. The description is given in terms of invariant Spencer cohomology. Some consequences for the theory of G-structures are obtained. Reviewer: I.V.Chekalov Cited in 1 ReviewCited in 1 Document MSC: 17B70 Graded Lie (super)algebras 17B45 Lie algebras of linear algebraic groups 53C10 \(G\)-structures 53C30 Differential geometry of homogeneous manifolds Keywords:graded Lie algebras; filtered Lie algebras; G-structures PDF BibTeX XML Cite \textit{D. V. Alekseevskij}, Sov. Math., Dokl. 37, No. 2, 381--384 (1988; Zbl 0695.17011); translation from Dokl. Akad. Nauk SSSR 299, No. 3, 521--525 (1988)