zbMATH — the first resource for mathematics

Existence of solutions to a multidimensional analog of the Beltrami equation. (English. Russian original) Zbl 0695.35137
Sib. Math. J. 30, No. 1, 79-87 (1989); translation from Sib. Mat. Zh. 30, No. 1(173), 103-113 (1989).
Let \(U\subset C^ n\), \(\mu\) : \(U\to\) a set of complex \(n\times n\) matrices with measurable elements \(\mu_{kj}(z)\) \((k,j=1,...,n)\), belonging to the space \(L^{\infty}(U)\). In the paper for the following multidimensional analog of Beltrami equation: \[ (*)\quad {\bar \partial}_ kf(z)=\sum^{n}_{j=1}\partial_ jf(z)\mu_{jk}(z)\quad (k=1,...,n), \] where f: \(U\to C\) is a solution of (*) with general (in the Sobolev sense) derivatives \({\bar \partial}_ kf\), \(\partial_ kf\) \((k=1,...,n)\), a theorem on existence and uniqueness of the solution of the equation (*) is proved.
Reviewer: W.Kotarski
35N10 Overdetermined systems of PDEs with variable coefficients
35F05 Linear first-order PDEs
Full Text: DOI
[1] M. A. Lavrent’ev, ?A general problem of the theory of quasiconformal representation on plane region,? Mat. Sb. N. S.,21(63), 285-320 (1947).
[2] L. V. Ahlfors, Lectures on Quasiconformal Mappings, Van Nostrand Mathematical Studies, No. 10, D. Van Nostrand Co., Inc., Toronto, Ont.-New York-London (1966).
[3] I. N. Vekua, Generalized Analytic Functions [in Russian], Gosudarstv. Izdat. Fiz.-Mat. Lit., Moscow (1959). · Zbl 0092.29703
[4] A. Newlander and L. Nirenberg, ?Complex analytic coordinates in almost complex manifolds,? Ann. Math.,65, No. 3, 391-404 (1954). · Zbl 0079.16102 · doi:10.2307/1970051
[5] A. Nienhuis and W. B. Wolf, ?Some integration problems in almost complex manifolds,? Ann. Math.,77, No. 3, 424-483 (1963). · Zbl 0115.16103 · doi:10.2307/1970126
[6] J. J. Kohn, ?Harmonic integrals on strongly pseudoconvex manifolds,? Ann. Math.,78, No. 1, 112-148 (1963). · Zbl 0161.09302 · doi:10.2307/1970506
[7] L. Hörmander, An Introduction to Complex Analysis in Several Variables, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont-London (1966).
[8] B. Malgrange, Sur l’intégrabilité des structures pseudocomplexes, in: Symposia Math., INDAM, Rome, 1968, Academic Press, London,11, 289-296 (1969).
[9] A. P. Kopylov, ?On stability of classes of multidimensional holomorphic mappings. I. The stability concept. Liouville’s theorem,? Sib. Mat. Zh.,23, No. 2, 83-111 (1982); ?II. Stability of classes of holomorphic mappings,? Sib. Mat. Zh.,23, No. 4, 65-89 (1982); ?III. Properties of mappings close to holomorphic,? Sib. Mat. Zh.,24, No. 3, 70-91 (1983). · Zbl 0509.32012
[10] L. A. Aizenberg and A. P. Yuzhakov, Integral Representations and Residues in Multidimensional Complex Analysis [in Russian], Nauka, Novosibirsk (1979). · Zbl 0445.32002
[11] S. L. Sobolev, ?On a theorem of functional analysis,? Mat. Sb.,4, 471-497 (1938).
[12] V. S. Vladimirov, The Equations of Mathematical Physics [in Russian], Nauka, Moscow (1971). · Zbl 0207.09101
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.