Duals and propagators: A canonical formalism for nonlinear equations. (English) Zbl 0695.35221

Summary: A new formalism for solving general nonlinear equations is proposed. Given a nonlinear operator equation, a dual operator is constructed, canonically, similar to the adjoint operator in linear theory. By using this dual operator, advanced and retarded propagators (analogs of the Green’s functions in linear theory) are generated. These propagators satisfy the customary reciprocity and semigroup properties and yield the formal solution of the original nonlinear problem. It is further shown that these propagators can be obtained either by solving a linear equation that still contains an implicit dependence on the problem’s solution or by solving a closed-form nonlinear integral equation from which the problem’s solution itself is completely eliminated. The formalism is canonical in the sense that its applicability is not affected by the particularities of the nonlinear operator, boundary conditions, and underlying phase space. All aspects of applying this formalism to nonlinear problems are illustrated analytically on the Riccati equation.


35R99 Miscellaneous topics in partial differential equations
47H99 Nonlinear operators and their properties
Full Text: DOI


[1] DOI: 10.1103/PhysRevLett.15.240 · Zbl 1201.35174 · doi:10.1103/PhysRevLett.15.240
[2] DOI: 10.1103/PhysRevLett.19.1095 · doi:10.1103/PhysRevLett.19.1095
[3] DOI: 10.1002/cpa.3160280105 · Zbl 0295.35004 · doi:10.1002/cpa.3160280105
[4] DOI: 10.1088/0031-8949/20/3-4/026 · Zbl 1063.37559 · doi:10.1088/0031-8949/20/3-4/026
[5] DOI: 10.1103/PhysRevLett.53.1 · doi:10.1103/PhysRevLett.53.1
[6] DOI: 10.1088/0031-8949/32/3/001 · Zbl 1063.35553 · doi:10.1088/0031-8949/32/3/001
[7] DOI: 10.1088/0031-8949/32/3/001 · Zbl 1063.35553 · doi:10.1088/0031-8949/32/3/001
[8] DOI: 10.1007/BF00402836 · Zbl 0609.35002 · doi:10.1007/BF00402836
[9] DOI: 10.1063/1.526219 · doi:10.1063/1.526219
[10] DOI: 10.1143/PTP.65.861 · Zbl 1074.58501 · doi:10.1143/PTP.65.861
[11] DOI: 10.1103/PhysRevLett.55.445 · doi:10.1103/PhysRevLett.55.445
[12] DOI: 10.1073/pnas.37.7.452 · doi:10.1073/pnas.37.7.452
[13] DOI: 10.1073/pnas.37.7.452 · doi:10.1073/pnas.37.7.452
[14] DOI: 10.1073/pnas.37.7.452 · doi:10.1073/pnas.37.7.452
[15] DOI: 10.1063/1.525186 · doi:10.1063/1.525186
[16] DOI: 10.1088/0305-4470/19/10/030 · Zbl 0628.34008 · doi:10.1088/0305-4470/19/10/030
[17] DOI: 10.1137/0146032 · Zbl 0606.60065 · doi:10.1137/0146032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.