×

zbMATH — the first resource for mathematics

Total variation-based phase retrieval for Poisson noise removal. (English) Zbl 1398.65071

MSC:
65F22 Ill-posedness and regularization problems in numerical linear algebra
65N21 Numerical methods for inverse problems for boundary value problems involving PDEs
46N10 Applications of functional analysis in optimization, convex analysis, mathematical programming, economics
49N30 Problems with incomplete information (optimization)
49N45 Inverse problems in optimal control
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] F. J. Anscombe, The transformation of Poisson, binomial and negative-binomial data, Biometrika, 35 (1948), pp. 246–254. · Zbl 0032.03702
[2] S. Bahmani and J. Romberg, Phase retrieval meets statistical learning theory: A flexible convex relaxation, in Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, Proc. Mach. Learn. Res. 54, 2017, pp. 252–260. · Zbl 1408.62032
[3] R. Balan, P. Casazza, and D. Edidin, On signal reconstruction without phase, Appl. Comput. Harmon. Anal., 20 (2006), pp. 345–356. · Zbl 1090.94006
[4] H. H. Bauschke, P. L. Combettes, and D. R. Luke, Phase retrieval, error reduction algorithm, and Fienup variants: A view from convex optimization, J. Opt. Soc. Amer. A, 19 (2002), pp. 1334–1345.
[5] H. H. Bauschke, P. L. Combettes, and D. R. Luke, Hybrid projection–reflection method for phase retrieval, J. Opt. Soc. Amer. A, 20 (2003), pp. 1025–1034.
[6] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, Distributed optimization and statistical learning via the alternating direction method of multipliers, Found. Trends Mach. Learn., 3 (2011), pp. 1–122. · Zbl 1229.90122
[7] Y. M. Bruck and L. G. Sodin, On the ambiguity of the image reconstruction problem, Opt. Commun., 30 (1979), pp. 304–308.
[8] C. Brune, A. Sawatzky, and M. Burger, Bregman-EM-TV methods with application to optical nanoscopy, in Scale Space and Variational Methods in Computer Vision, Springer, Berlin, Heidelberg, 2009, pp. 235–246. · Zbl 1235.94016
[9] C. Brune, A. Sawatzky, and M. Burger, Primal and dual Bregman methods with application to optical nanoscopy, Int. J. Comput. Vis., 92 (2011), pp. 211–229. · Zbl 1235.94016
[10] E. J. Candès, Y. C. Eldar, T. Strohmer, and V. Voroninski, Phase retrieval via matrix completion, SIAM J. Imaging Sci., 6 (2013), pp. 199–225, . · Zbl 1280.49052
[11] E. J. Candès, X. Li, and M. Soltanolkotabi, Phase retrieval from coded diffraction patterns, Appl. Comput. Harmon. Anal., 39 (2015), pp. 277–299. · Zbl 1329.78056
[12] E. J. Candès, X. Li, and M. Soltanolkotabi, Phase retrieval via Wirtinger flow: Theory and algorithms, IEEE Trans. Inform. Theory, 61 (2015), pp. 1985–2007. · Zbl 1359.94069
[13] E. J. Candès, T. Strohmer, and V. Voroninski, PhaseLift: Exact and stable signal recovery from magnitude measurements via convex programming, Comm. Pure Appl. Math., 66 (2013), pp. 1241–1274. · Zbl 1335.94013
[14] R. Chan, H. Yang, and T. Zeng, A two-stage image segmentation method for blurry images with Poisson or multiplicative Gamma noise, SIAM J. Imaging Sci., 7 (2014), pp. 98–127, . · Zbl 1297.65066
[15] R. H. Chan and K. Chen, Multilevel algorithm for a Poisson noise removal model with total-variation regularization, Int. J. Comput. Math., 84 (2007), pp. 1183–1198. · Zbl 1124.65057
[16] H. Chang, Y. Lou, M. K. Ng, and T. Zeng, Phase retrieval from incomplete magnitude information via total variation regularization, SIAM J. Sci. Comput., 38 (2016), pp. A3672–A3695, . · Zbl 1352.49034
[17] P. Chen and A. Fannjiang, Fourier phase retrieval with a single mask by Douglas–Rachford algorithms, Appl. Comput. Harmon. Anal., (2016). · Zbl 06858981
[18] P. Chen, A. Fannjiang, and G. R. Liu, Phase retrieval with one or two diffraction patterns by alternating projections of the null vector, J. Fourier Anal. Appl., (2017), . · Zbl 06897259
[19] Y. Chen and E. Candes, Solving random quadratic systems of equations is nearly as easy as solving linear systems, in Advances in Neural Information Processing Systems, MIT Press, Cambridge, MA, 2015, pp. 739–747.
[20] A. Conca, D. Edidin, M. Hering, and C. Vinzant, An algebraic characterization of injectivity in phase retrieval, Appl. Comput. Harmon. Anal., 38 (2015), pp. 346–356. · Zbl 1354.42003
[21] J. C. Dainty and J. R. Fienup, Phase retrieval and image reconstruction for astronomy, in Image Recovery: Theory and Application, H. Stark, ed., Academic Press, New York, 1987, pp. 231–275.
[22] J. Douglas and H. H. Rachford, On the numerical solution of heat conduction problems in two and three space variables, Trans. Amer. Math. Soc., 82 (1956), pp. 421–439. · Zbl 0070.35401
[23] V. Elser, Phase retrieval by iterated projections, J. Opt. Soc. Amer. A, 20 (2003), pp. 40–55.
[24] A. Fannjiang, Absolute uniqueness in phase retrieval with random illumination, Inverse Problems, 28 (2012), 075008. · Zbl 1250.78024
[25] J. R. Fienup, Phase retrieval algorithms: A comparison, Appl. Opt., 21 (1982), pp. 2758–2769.
[26] M. Figueiredo and J. Bioucas-Dias, Restoration of Poissonian images using alternating direction optimization, IEEE Trans. Image Process., 19 (2010), pp. 3133–3145. · Zbl 1371.94128
[27] M. P. Friedlander and I. Macêdo, Low-rank spectral optimization via gauge duality, SIAM J. Sci. Comput., 38 (2016), pp. A1616–A1638, .
[28] R. W. Gerchberg and W. O. Saxton, A practical algorithm for the determination of the phase from image and diffraction plane pictures, Optik, 35 (1972), pp. 237–246.
[29] R. Giryes and M. Elad, Sparsity-based Poisson denoising with dictionary learning, IEEE Trans. Image Process., 23 (2014), pp. 5057–5069. · Zbl 1374.94123
[30] T. Goldstein and C. Studer, PhaseMax: Convex Phase Retrieval via Basis Pursuit, preprint, , 2016. · Zbl 1390.94194
[31] R. W. Harrison, Phase problem in crystallography, J. Opt. Soc. Amer. A, 10 (1993), pp. 1046–1055, .
[32] M. Hayes, The reconstruction of a multidimensional sequence from the phase or magnitude of its Fourier transform, IEEE Trans. Acoust. Speech Signal Process., 30 (1982), pp. 140–154. · Zbl 0563.65084
[33] R. Hesse, D. R. Luke, S. Sabach, and M. K. Tam, Proximal heterogeneous block implicit-explicit method and application to blind ptychographic diffraction imaging, SIAM J. Imaging Sci., 8 (2015), pp. 426–457, . · Zbl 1320.90063
[34] E. Hofstetter, Construction of time-limited functions with specified autocorrelation functions, IEEE Trans. Inform. Theory, 10 (1964), pp. 119–126. · Zbl 0141.15001
[35] M. Hong, Z.-Q. Luo, and M. Razaviyayn, Convergence analysis of alternating direction method of multipliers for a family of nonconvex problems, SIAM J. Optim., 26 (2016), pp. 337–364, . · Zbl 1356.49061
[36] K. Jaganathan, Y. C. Eldar, and B. Hassibi, Phase Retrieval: An Overview of Recent Developments, preprint, , 2015.
[37] K. Jaganathan, S. Oymak, and B. Hassibi, Sparse phase retrieval: Uniqueness guarantees and recovery algorithms, IEEE Trans. Signal Process., 65 (2017), pp. 2402–2410. · Zbl 1414.94273
[38] X. Jiang, P. Reynaud-Bouret, V. Rivoirard, L. Sansonnet, and R. Willett, A Data-Dependent Weighted Lasso under Poisson Noise, preprint, , 2015.
[39] T. Le, R. Chartrand, and T. Asaki, A variational approach to reconstructing images corrupted by Poisson noise, J. Math. Imaging Vision, 27 (2007), pp. 257–263.
[40] Y. Lou and M. Yan, Fast \(l\_1 \)-\( l\_2\) minimization via a proximal operator, J. Sci. Comput., (2017).
[41] Y. M. Lu and G. Li, Phase Transitions of Spectral Initialization for High-Dimensional Nonconvex Estimation, preprint, , 2017.
[42] D. R. Luke, Relaxed averaged alternating reflections for diffraction imaging, Inverse Problems, 21 (2005), pp. 37–50. · Zbl 1146.78008
[43] D. R. Luke, J. V. Burke, and R. G. Lyon, Optical wavefront reconstruction: Theory and numerical methods, SIAM Rev., 44 (2002), pp. 169–224, . · Zbl 1094.78004
[44] M. Lustig, D. Donoho, J. M. Santos, and J. M. Pauly, Compressed sensing MRI, IEEE Signal Process. Mag., 25 (2008), pp. 72–82.
[45] M. Mäkitalo and A. Foi, Optimal inversion of the Anscombe transformation in low-count Poisson image denoising, IEEE Trans. Image Process., 20 (2011), pp. 99–109. · Zbl 1372.94173
[46] S. Marchesini, Invited article: A unified evaluation of iterative projection algorithms for phase retrieval, Rev. Sci. Instrum., 78 (2007), 011301.
[47] S. Marchesini, Phase retrieval and saddle-point optimization, J. Opt. Soc. Amer. A, 24 (2007), pp. 3289–3296.
[48] S. Marchesini, Y.-C. Tu, and H.-T. Wu, Alternating projection, ptychographic imaging and phase synchronization, Appl. Comput. Harmon. Anal., 41 (2016), pp. 815–851. · Zbl 1388.94015
[49] J. Miao, T. Ishikawa, Q. Shen, and T. Earnest, Extending x-ray crystallography to allow the imaging of noncrystalline materials, cells, and single protein complexes, Annu. Rev. Phys. Chem., 59 (2008), pp. 387–410.
[50] P. Netrapalli, P. Jain, and S. Sanghavi, Phase retrieval using alternating minimization, IEEE Trans. Signal Process., 63 (2015), pp. 4814–4826. · Zbl 1394.94421
[51] J. Qian, C. Yang, A. Schirotzek, F. Maia, and S. Marchesini, Efficient algorithms for ptychographic phase retrieval, in Inverse Problems and Applications, Contemp. Math. 615, AMS, Providence, RI, 2014, pp. 261–279. · Zbl 1329.65332
[52] L. Rudin, S. Osher, and E. Fatemi, Nonlinear total variation noise removal algorithm, Phys. D, 60 (1992), pp. 259–268. · Zbl 0780.49028
[53] J. Salmon, Z. Harmany, C.-A. Deledalle, and R. Willett, Poisson noise reduction with non-local PCA, J. Math. Imaging Vision, 48 (2014), pp. 279–294. · Zbl 1365.94050
[54] J. L. C. Sanz, Mathematical considerations for the problem of Fourier transform phase retrieval from magnitude, SIAM J. Appl. Math., 45 (1985), pp. 651–664, . · Zbl 0569.42009
[55] Y. Shechtman, A. Beck, and Y. C. Eldar, GESPAR: Efficient phase retrieval of sparse signals, IEEE Trans. Signal Process., 62 (2014), pp. 928–938. · Zbl 1394.94522
[56] Y. Shechtman, Y. C. Eldar, O. Cohen, H. N. Chapman, J. Miao, and M. Segev, Phase retrieval with application to optical imaging: A contemporary overview, IEEE Trans. Signal Process. Mag., 32 (2015), pp. 87–109.
[57] I. Waldspurger, A. d‘Aspremont, and S. Mallat, Phase recovery, MaxCut and complex semidefinite programming, Math. Program., 149 (2015), pp. 47–81. · Zbl 1329.94018
[58] A. Walther, The question of phase retrieval in optics, J. Mod. Opt., 10 (1963), pp. 41–49.
[59] Y. Wang and Z. Xu, Phase retrieval for sparse signals, Appl. Comput. Harmon. Anal., 37 (2014), pp. 531–544. · Zbl 1297.94009
[60] Y. Wang, W. Yin, and J. Zeng, Global Convergence of ADMM in Nonconvex Nonsmooth Optimization, preprint, , 2015. · Zbl 07042437
[61] Y. Wen, R. H. Chan, and T. Zeng, Primal-dual algorithms for total variation based image restoration under poisson noise, Sci. China Math., 59 (2016), pp. 141–160. · Zbl 1403.65029
[62] Z. Wen, C. Yang, X. Liu, and S. Marchesini, Alternating direction methods for classical and ptychographic phase retrieval, Inverse Problems, 28 (2012), 115010. · Zbl 1254.78037
[63] C. Wu and X.-C. Tai, Augmented Lagrangian method, dual methods, and split Bregman iterations for ROF, vectorial TV, and higher order models, SIAM J. Imaging Sci., 3 (2010), pp. 300–339, . · Zbl 1206.90245
[64] P. Yin and J. Xin, PhaseLiftOff: An accurate and stable phase retrieval method based on difference of trace and Frobenius norms, Commun. Math. Sci., 13 (2015), pp. 1033–1049. · Zbl 1342.94052
[65] X. Zhang, Y. Lu, and T. Chan, A novel sparsity reconstruction method from Poisson data for 3d bioluminescence tomography, J. Sci. Comput., 50 (2012), pp. 519–535. · Zbl 1251.92028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.