Hafner, James Lee; Ivić, Aleksandar On sums of Fourier coefficients of cusp forms. (English) Zbl 0696.10020 Enseign. Math., II. Sér. 35, No. 3-4, 375-382 (1989). Let \(F(z)=\sum a(n)e^{2\pi inz}\) be a cusp form of weight k for the full modular group, and set \(A(x)=\sum_{n\leq x}a(n)\). This paper is concerned with estimates for A(x) and for the error term B(x) in the asymptotic formula \[ \int^{x}_{0}A(t)^ 2 dt=Cx^{k+1/2}+B(x). \] It is shown that \(A(x)=O(x^{k/2-1/6})\) and \[ A(x)=\Omega_{\pm}(x^{k/2-1/4} \exp \{\frac{D(\log \log x)^{1/4}}{(\log \log \log x)^{3/4}}\}), \] for a suitable constant \(D>0\). Moreover B(x) satisfies the same \(\Omega\)-estimate except that \(``\Omega_{\pm}''\) must be replaced by “\(\Omega\) ”. Reviewer: D.R.Heath-Brown Cited in 3 ReviewsCited in 36 Documents MSC: 11F11 Holomorphic modular forms of integral weight 11N37 Asymptotic results on arithmetic functions Keywords:Fourier coefficients; summatory function; cusp form; error term; asymptotic formula; \(\Omega\)-estimate PDF BibTeX XML Cite \textit{J. L. Hafner} and \textit{A. Ivić}, Enseign. Math. (2) 35, No. 3--4, 375--382 (1989; Zbl 0696.10020) OpenURL