×

Heat “polynomials” for a singular differential operator on (0,\(\infty)\). (English) Zbl 0696.41027

Summary: We generalize the theory of the heat polynomials introduced by P. V. Rosenbloom and D. V. Widder for a more general class of singular differential operators on (0,\(\infty)\). The heat polynomials associated with the Bessel operator and studied by D. T. Haimo appear as a particular case in this paper. In the special cases of second derivative and Bessel operators the heat polynomials are in fact polynomials in x and t, however, this property does not hold in general.

MSC:

41A58 Series expansions (e.g., Taylor, Lidstone series, but not Fourier series)
41A10 Approximation by polynomials
34B30 Special ordinary differential equations (Mathieu, Hill, Bessel, etc.)
35K05 Heat equation
42A32 Trigonometric series of special types (positive coefficients, monotonic coefficients, etc.)
33C10 Bessel and Airy functions, cylinder functions, \({}_0F_1\)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] A. Achour, K. Trimeche (1983):La g-fonction de Littlewood-Paley associée à un opérateur différentiel singulier sur (0, . Ann. Inst. Fourier (Grenoble),33:203–226. · Zbl 0489.34022
[2] L. R. Bragg (1965):The radial heat polynomials and related functions. Trans. Amer. Math. Soc.,119:319–336. · Zbl 0141.29201 · doi:10.1090/S0002-9947-1965-0181769-4
[3] H. Chebli (1972):Sur la positivité des opérateurs de ”translations généralisée” associés à un opérateur de Sturm-Liouville sur ]0, . C. R. Acad. Sci. Paris,275:601–604.
[4] H. Chebli (1974):Sur un théorème de Paley-Wiener associé à la décomposition spectrale d’un opérateur de Sturm-Liouville sur ]0, .J. Funct. Anal.,17:447–461. · Zbl 0288.47040 · doi:10.1016/0022-1236(74)90052-4
[5] H. Chebli (1979):Théorème de Paley-Wiener associé à un opérateur différentiel singulier sur (O, . J. Math. Pures Appl.,58:1–19. · Zbl 0362.34019
[6] A. Erdeley (1953):Higher Transcendental Functions, Vol. 2. New York: MacGraw-Hill.
[7] A. Fitouhi, H. Annabi (1986):La g-fonction de Littlewood-Paley associée à une classe d’opérateur différentiel sur (0, contenant l’opérateur de Bessel. C. R. Acad. Sci. Paris Sér. I,303:411–413. · Zbl 0596.42008
[8] A.Fitouhi, M. M.Hamza (preprint):A uniform expansion for eigenfunction of a singular second-order differential operator.
[9] F. Flensted-Jensen (1972):Paley-Wiener type theorems for a differential operator connected with symmetric spaces. Ark. Mat.,10:143–162. · Zbl 0233.42012 · doi:10.1007/BF02384806
[10] F. Flensted-Jensen, T. Koornwinder (1973):The convolution structure for Jacobi functions expansions. Ark. Mat.,11:245–262. · Zbl 0267.42009 · doi:10.1007/BF02388521
[11] A.Friedman, Partial Differential Equations of Parabolic Type. Englewood Cliffs, NJ: Prentice-Hall. · Zbl 0144.34903
[12] D. T. Haimo (1966):Expansions of generalized heat polynomials and their Appell transforms. J. Math. Mech.,15:735–758. · Zbl 0158.11902
[13] D. T. Haimo (1966):Generalized temperature functions. Duke Math. J.,33:305–322. · Zbl 0144.14202 · doi:10.1215/S0012-7094-66-03335-7
[14] T. Koornwinder (1975):A new proof of a Paley-Wiener type theorem for the Jacobi transform. Ark. Math.,13:145–153. · Zbl 0303.42022 · doi:10.1007/BF02386203
[15] N. M. Lebedev (1972): Special Functions and Their Applications. New York: Dover. · Zbl 0271.33001
[16] F. W. J. Olver (1974): Asymptotics and Special Functions. New York: Academic Press. · Zbl 0303.41035
[17] P. C. Rosenbloom, D. V. Widder (1959):Expansions in terms of heat polynomials and associated functions. Trans. Amer. Math. Soc.,92:220–266. · Zbl 0086.27203 · doi:10.1090/S0002-9947-1959-0107118-2
[18] R. Trimeche (1975):Convergence des series de Taylor generalisées au sens de Delsarte. C. R. Acad. Sci. Paris Sér. A,281:1015–1017. · Zbl 0315.40002
[19] K. Trimeche (1987):Transformation integrate de Weyl et théorème de Paley-Wiener associés à un opérateur différentiel singulier sur (0, . J. Math. Pures Appl.,60:51–98.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.